FOCUS DATA MCP Server
Convert natural language into SQL statements with a two-step generation solution to reduce hallucinations and improve trust.
FOCUS DATA MCP Server [中文]
A Model Context Protocol (MCP) server enables artificial intelligence assistants to convert natural language into SQL statements.
There are already so many Text-to-SQL frameworks. Why do we still need another one?
In simple terms, focus_mcp_sql adopts a two-step SQL generation solution, which enables control over the hallucinations of LLM and truly builds the trust of non-technical users in the generated SQL results.
Below is the comparison table between focus_mcp_sql and others:
Comparison Analysis Table
Here’s a side-by-side comparison of focus_mcp_sql with other LLM-based frameworks:
| Feature | Traditional LLM Frameworks | focus_mcp_sql |
|---|---|---|
| Generation Process | Black box, direct SQL generation | Transparent, two-step (keywords + SQL) |
| Hallucination Risk | High, depends on model quality | Low, controllable (keyword verification) |
| Speed | Slow, relies on large model inference | Fast, deterministic keyword-to-SQL |
| Cost | High, requires advanced models | Low, reduces reliance on large models |
| Non-Technical User Friendliness | Low, hard to verify results | High, easy keyword checking |
Features
-Initialize the model -Convert natural language to SQL statements
Prerequisites
- jdk 23 or higher. Download jdk
- gradle 8.12 or higher. Download gradle
- register Datafocus to obtain bearer token:
- Register an account in Datafocus
- Create an application
- Enter the application
- Admin -> Interface authentication -> Bearer Token -> New Bearer Token

Installation
- Clone this repository:
git clone https://github.com/FocusSearch/focus_mcp_sql.git
cd focus_mcp_sql
- Build the server:
gradle clean
gradle bootJar
The jar path: build/libs/focus_mcp_sql.jar
MCP Configuration
Add the server to your MCP settings file:
{
"mcpServers": {
"focus_mcp_data": {
"command": "java",
"args": [
"-jar",
"path/to/focus_mcp_sql/focus_mcp_sql.jar"
],
"autoApprove": [
"gptText2sqlStart",
"gptText2sqlChat"
]
}
}
}
Available Tools
1. gptText2sqlStart
initial model.
Parameters:
model(required): table modelbearer(required): bearer tokenlanguage(optional): language ['english','chinese']
Example:
{
"model": {
"tables": [
{
"columns": [
{
"columnDisplayName": "name",
"dataType": "string",
"aggregation": "",
"columnName": "name"
},
{
"columnDisplayName": "address",
"dataType": "string",
"aggregation": "",
"columnName": "address"
},
{
"columnDisplayName": "age",
"dataType": "int",
"aggregation": "SUM",
"columnName": "age"
},
{
"columnDisplayName": "date",
"dataType": "timestamp",
"aggregation": "",
"columnName": "date"
}
],
"tableDisplayName": "test",
"tableName": "test"
}
],
"relations": [
],
"type": "mysql",
"version": "8.0"
},
"bearer": "ZTllYzAzZjM2YzA3NDA0ZGE3ZjguNDJhNDjNGU4NzkyYjY1OTY0YzUxYWU5NmU="
}
model 参数说明:
| 名称 | 位置 | 类型 | 必选 | 说明 |
|---|---|---|---|---|
| model | body | object | 是 | none |
| » type | body | string | 是 | 数据库类型 |
| » version | body | string | 是 | 数据库版本 |
| » tables | body | [object] | 是 | 表结构列表 |
| »» tableDisplayName | body | string | 否 | 表显示名 |
| »» tableName | body | string | 否 | 表原始名 |
| »» columns | body | [object] | 否 | 表列列表 |
| »»» columnDisplayName | body | string | 是 | 列显示名 |
| »»» columnName | body | string | 是 | 列原始名 |
| »»» dataType | body | string | 是 | 列数据类型 |
| »»» aggregation | body | string | 是 | 列聚合方式 |
| » relations | body | [object] | 是 | 表关联关系列表 |
| »» conditions | body | [object] | 否 | 关联条件 |
| »»» dstColName | body | string | 否 | dimension 表关联列原始名 |
| »»» srcColName | body | string | 否 | fact 表关联列原始名 |
| »» dimensionTable | body | string | 否 | dimension 表原始名 |
| »» factTable | body | string | 否 | fact 表原始名 |
| »» joinType | body | string | 否 | 关联类型 |
2. gptText2sqlChat
Convert natural language to SQL.
Parameters:
chatId(required): chat idinput(required): Natural languagebearer(required): bearer token
Example:
{
"chatId": "03975af5de4b4562938a985403f206d4",
"input": "what is the max age",
"bearer": "ZTllYzAzZjM2YzA3NDA0ZGE3ZjguNDJhNDjNGU4NzkyYjY1OTY0YzUxYWU5NmU="
}
Response Format
All tools return responses in the following format:
{
"errCode": 0,
"exception": "",
"msgParams": null,
"promptMsg": null,
"success": true,
"data": {
}
}
Visual Studio Code Cline Sample
- vsCode install cline plugin
- mcp server config

- use
- initial model

- transfer: what is the max age

- initial model
Contact:
Related Servers
AWS Athena
Run SQL queries on data in Amazon S3 using AWS Athena.
DART-MCP
Perform financial analysis using the DART API and Claude.
dbt
Official MCP server for dbt (data build tool) providing integration with dbt Core/Cloud CLI, project metadata discovery, model information, and semantic layer querying capabilities.
JCR Partition Table
Provides up-to-date journal partition table queries based on ShowJCR data.
CloudBase AI ToolKit
Go from AI prompt to live app in one click. CloudBase AI ToolKit is the bridge that connects your AI IDE (Cursor, Copilot, etc.) directly to Tencent CloudBase.
Coresignal
Access comprehensive B2B data on companies, employees, and job postings for your LLMs and AI workflows.
Elasticsearch/OpenSearch
An MCP Server for interacting with Elasticsearch and OpenSearch clusters.
Billy MCP Client
Access live U.S. congressional data from the Congress.gov API.
PostgreSQL
Provides read-only access to PostgreSQL databases, allowing LLMs to inspect schemas and execute queries.
Metabase MCP Server
Integrates AI assistants with the Metabase business intelligence and analytics platform.
