FOCUS DATA MCP Server
Convert natural language into SQL statements with a two-step generation solution to reduce hallucinations and improve trust.
FOCUS DATA MCP Server [中文]
A Model Context Protocol (MCP) server enables artificial intelligence assistants to convert natural language into SQL statements.
There are already so many Text-to-SQL frameworks. Why do we still need another one?
In simple terms, focus_mcp_sql adopts a two-step SQL generation solution, which enables control over the hallucinations of LLM and truly builds the trust of non-technical users in the generated SQL results.
Below is the comparison table between focus_mcp_sql and others:
Comparison Analysis Table
Here’s a side-by-side comparison of focus_mcp_sql with other LLM-based frameworks:
Feature | Traditional LLM Frameworks | focus_mcp_sql |
---|---|---|
Generation Process | Black box, direct SQL generation | Transparent, two-step (keywords + SQL) |
Hallucination Risk | High, depends on model quality | Low, controllable (keyword verification) |
Speed | Slow, relies on large model inference | Fast, deterministic keyword-to-SQL |
Cost | High, requires advanced models | Low, reduces reliance on large models |
Non-Technical User Friendliness | Low, hard to verify results | High, easy keyword checking |
Features
-Initialize the model -Convert natural language to SQL statements
Prerequisites
- jdk 23 or higher. Download jdk
- gradle 8.12 or higher. Download gradle
- register Datafocus to obtain bearer token:
- Register an account in Datafocus
- Create an application
- Enter the application
- Admin -> Interface authentication -> Bearer Token -> New Bearer Token
Installation
- Clone this repository:
git clone https://github.com/FocusSearch/focus_mcp_sql.git
cd focus_mcp_sql
- Build the server:
gradle clean
gradle bootJar
The jar path: build/libs/focus_mcp_sql.jar
MCP Configuration
Add the server to your MCP settings file:
{
"mcpServers": {
"focus_mcp_data": {
"command": "java",
"args": [
"-jar",
"path/to/focus_mcp_sql/focus_mcp_sql.jar"
],
"autoApprove": [
"gptText2sqlStart",
"gptText2sqlChat"
]
}
}
}
Available Tools
1. gptText2sqlStart
initial model.
Parameters:
model
(required): table modelbearer
(required): bearer tokenlanguage
(optional): language ['english','chinese']
Example:
{
"model": {
"tables": [
{
"columns": [
{
"columnDisplayName": "name",
"dataType": "string",
"aggregation": "",
"columnName": "name"
},
{
"columnDisplayName": "address",
"dataType": "string",
"aggregation": "",
"columnName": "address"
},
{
"columnDisplayName": "age",
"dataType": "int",
"aggregation": "SUM",
"columnName": "age"
},
{
"columnDisplayName": "date",
"dataType": "timestamp",
"aggregation": "",
"columnName": "date"
}
],
"tableDisplayName": "test",
"tableName": "test"
}
],
"relations": [
],
"type": "mysql",
"version": "8.0"
},
"bearer": "ZTllYzAzZjM2YzA3NDA0ZGE3ZjguNDJhNDjNGU4NzkyYjY1OTY0YzUxYWU5NmU="
}
model 参数说明:
名称 | 位置 | 类型 | 必选 | 说明 |
---|---|---|---|---|
model | body | object | 是 | none |
» type | body | string | 是 | 数据库类型 |
» version | body | string | 是 | 数据库版本 |
» tables | body | [object] | 是 | 表结构列表 |
»» tableDisplayName | body | string | 否 | 表显示名 |
»» tableName | body | string | 否 | 表原始名 |
»» columns | body | [object] | 否 | 表列列表 |
»»» columnDisplayName | body | string | 是 | 列显示名 |
»»» columnName | body | string | 是 | 列原始名 |
»»» dataType | body | string | 是 | 列数据类型 |
»»» aggregation | body | string | 是 | 列聚合方式 |
» relations | body | [object] | 是 | 表关联关系列表 |
»» conditions | body | [object] | 否 | 关联条件 |
»»» dstColName | body | string | 否 | dimension 表关联列原始名 |
»»» srcColName | body | string | 否 | fact 表关联列原始名 |
»» dimensionTable | body | string | 否 | dimension 表原始名 |
»» factTable | body | string | 否 | fact 表原始名 |
»» joinType | body | string | 否 | 关联类型 |
2. gptText2sqlChat
Convert natural language to SQL.
Parameters:
chatId
(required): chat idinput
(required): Natural languagebearer
(required): bearer token
Example:
{
"chatId": "03975af5de4b4562938a985403f206d4",
"input": "what is the max age",
"bearer": "ZTllYzAzZjM2YzA3NDA0ZGE3ZjguNDJhNDjNGU4NzkyYjY1OTY0YzUxYWU5NmU="
}
Response Format
All tools return responses in the following format:
{
"errCode": 0,
"exception": "",
"msgParams": null,
"promptMsg": null,
"success": true,
"data": {
}
}
Visual Studio Code Cline Sample
- vsCode install cline plugin
- mcp server config
- use
- initial model
- transfer: what is the max age
- initial model
Contact:
Related Servers
Materials Project MCP
Query the Materials Project database using the mp_api client. Requires an MP_API_KEY environment variable.
Memory Custom : PouchDB
Extends the Memory server with PouchDB for robust document-based storage, custom memory file paths, and interaction timestamping.
Synechron Text2SQL MCP Server
Provides natural language access to relational databases using advanced language models, supporting multiple database types.
Dremio
Integrate Large Language Models (LLMs) with the Dremio data lakehouse platform.
MCP Memory libSQL
A persistent memory system for MCP using libSQL, providing vector search and efficient knowledge storage.
PostgreSQL MCP Server
An MCP server that provides tools to interact with PostgreSQL databases.
DICOM MCP Server
Enables AI assistants to query, read, and move data on DICOM servers such as PACS and VNA for medical imaging.
StockFlow
Provides real-time stock data and options analysis from Yahoo Finance, enabling market data access, stock analysis, and options strategy evaluation.
MCP Postgres Query Server
An MCP server for querying a PostgreSQL database in read-only mode.
CData API Driver MCP Server
A read-only MCP server for querying live data from various APIs using the CData JDBC Driver for API Driver.