FOCUS DATA MCP Server
Convert natural language into SQL statements with a two-step generation solution to reduce hallucinations and improve trust.
FOCUS DATA MCP Server [中文]
A Model Context Protocol (MCP) server enables artificial intelligence assistants to convert natural language into SQL statements.
There are already so many Text-to-SQL frameworks. Why do we still need another one?
In simple terms, focus_mcp_sql adopts a two-step SQL generation solution, which enables control over the hallucinations of LLM and truly builds the trust of non-technical users in the generated SQL results.
Below is the comparison table between focus_mcp_sql and others:
Comparison Analysis Table
Here’s a side-by-side comparison of focus_mcp_sql with other LLM-based frameworks:
| Feature | Traditional LLM Frameworks | focus_mcp_sql |
|---|---|---|
| Generation Process | Black box, direct SQL generation | Transparent, two-step (keywords + SQL) |
| Hallucination Risk | High, depends on model quality | Low, controllable (keyword verification) |
| Speed | Slow, relies on large model inference | Fast, deterministic keyword-to-SQL |
| Cost | High, requires advanced models | Low, reduces reliance on large models |
| Non-Technical User Friendliness | Low, hard to verify results | High, easy keyword checking |
Features
-Initialize the model -Convert natural language to SQL statements
Prerequisites
- jdk 23 or higher. Download jdk
- gradle 8.12 or higher. Download gradle
- register Datafocus to obtain bearer token:
- Register an account in Datafocus
- Create an application
- Enter the application
- Admin -> Interface authentication -> Bearer Token -> New Bearer Token

Installation
- Clone this repository:
git clone https://github.com/FocusSearch/focus_mcp_sql.git
cd focus_mcp_sql
- Build the server:
gradle clean
gradle bootJar
The jar path: build/libs/focus_mcp_sql.jar
MCP Configuration
Add the server to your MCP settings file:
{
"mcpServers": {
"focus_mcp_data": {
"command": "java",
"args": [
"-jar",
"path/to/focus_mcp_sql/focus_mcp_sql.jar"
],
"autoApprove": [
"gptText2sqlStart",
"gptText2sqlChat"
]
}
}
}
Available Tools
1. gptText2sqlStart
initial model.
Parameters:
model(required): table modelbearer(required): bearer tokenlanguage(optional): language ['english','chinese']
Example:
{
"model": {
"tables": [
{
"columns": [
{
"columnDisplayName": "name",
"dataType": "string",
"aggregation": "",
"columnName": "name"
},
{
"columnDisplayName": "address",
"dataType": "string",
"aggregation": "",
"columnName": "address"
},
{
"columnDisplayName": "age",
"dataType": "int",
"aggregation": "SUM",
"columnName": "age"
},
{
"columnDisplayName": "date",
"dataType": "timestamp",
"aggregation": "",
"columnName": "date"
}
],
"tableDisplayName": "test",
"tableName": "test"
}
],
"relations": [
],
"type": "mysql",
"version": "8.0"
},
"bearer": "ZTllYzAzZjM2YzA3NDA0ZGE3ZjguNDJhNDjNGU4NzkyYjY1OTY0YzUxYWU5NmU="
}
model 参数说明:
| 名称 | 位置 | 类型 | 必选 | 说明 |
|---|---|---|---|---|
| model | body | object | 是 | none |
| » type | body | string | 是 | 数据库类型 |
| » version | body | string | 是 | 数据库版本 |
| » tables | body | [object] | 是 | 表结构列表 |
| »» tableDisplayName | body | string | 否 | 表显示名 |
| »» tableName | body | string | 否 | 表原始名 |
| »» columns | body | [object] | 否 | 表列列表 |
| »»» columnDisplayName | body | string | 是 | 列显示名 |
| »»» columnName | body | string | 是 | 列原始名 |
| »»» dataType | body | string | 是 | 列数据类型 |
| »»» aggregation | body | string | 是 | 列聚合方式 |
| » relations | body | [object] | 是 | 表关联关系列表 |
| »» conditions | body | [object] | 否 | 关联条件 |
| »»» dstColName | body | string | 否 | dimension 表关联列原始名 |
| »»» srcColName | body | string | 否 | fact 表关联列原始名 |
| »» dimensionTable | body | string | 否 | dimension 表原始名 |
| »» factTable | body | string | 否 | fact 表原始名 |
| »» joinType | body | string | 否 | 关联类型 |
2. gptText2sqlChat
Convert natural language to SQL.
Parameters:
chatId(required): chat idinput(required): Natural languagebearer(required): bearer token
Example:
{
"chatId": "03975af5de4b4562938a985403f206d4",
"input": "what is the max age",
"bearer": "ZTllYzAzZjM2YzA3NDA0ZGE3ZjguNDJhNDjNGU4NzkyYjY1OTY0YzUxYWU5NmU="
}
Response Format
All tools return responses in the following format:
{
"errCode": 0,
"exception": "",
"msgParams": null,
"promptMsg": null,
"success": true,
"data": {
}
}
Visual Studio Code Cline Sample
- vsCode install cline plugin
- mcp server config

- use
- initial model

- transfer: what is the max age

- initial model
Contact:
Related Servers
Neon MCP Server
Interact with Neon Postgres databases using natural language to manage projects, branches, queries, and migrations via the Neon API.
Weaviate MCP Client
An MCP client for connecting to and interacting with a Weaviate vector database.
Supabase
Access and manage your Supabase projects through the Model Context Protocol (MCP).
Amplify Data API MCP Server
Interact with AWS Amplify Gen2 data models using natural language and Cognito authentication.
MariaDB
An MCP server for retrieving data from a MariaDB database.
Amazon Neptune
Query Amazon Neptune databases using openCypher, Gremlin, and SPARQL. Supports both Neptune Database and Neptune Analytics.
MySQL MCP Server
An MCP server for accessing and managing MySQL databases.
Fireproof JSON DB Collection Server
Manage multiple Fireproof JSON document databases with cloud sync capabilities.
Fireproof
Immutable ledger database with live synchronization
Flexpa FHIR
An MCP server for interacting with FHIR (Fast Healthcare Interoperability Resources) servers, enabling access and search of healthcare data.
