LanceDB
Interact with on-disk documents using agentic RAG and hybrid search via LanceDB.
🗄️ LanceDB MCP Server for LLMS
A Model Context Protocol (MCP) server that enables LLMs to interact directly the documents that they have on-disk through agentic RAG and hybrid search in LanceDB. Ask LLMs questions about the dataset as a whole or about specific documents.
✨ Features
- 🔍 LanceDB-powered serverless vector index and document summary catalog.
- 📊 Efficient use of LLM tokens. The LLM itself looks up what it needs when it needs.
- 📈 Security. The index is stored locally so no data is transferred to the Cloud when using a local LLM.
🚀 Quick Start
To get started, create a local directory to store the index and add this configuration to your Claude Desktop config file:
MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"lancedb": {
"command": "npx",
"args": [
"lance-mcp",
"PATH_TO_LOCAL_INDEX_DIR"
]
}
}
}
Prerequisites
- Node.js 18+
- npx
- MCP Client (Claude Desktop App for example)
- Summarization and embedding models installed (see config.ts - by default we use Ollama models)
ollama pull snowflake-arctic-embed2ollama pull llama3.1:8b
Demo
Local Development Mode:
{
"mcpServers": {
"lancedb": {
"command": "node",
"args": [
"PATH_TO_LANCE_MCP/dist/index.js",
"PATH_TO_LOCAL_INDEX_DIR"
]
}
}
}
Use npm run build to build the project.
Use npx @modelcontextprotocol/inspector dist/index.js PATH_TO_LOCAL_INDEX_DIR to run the MCP tool inspector.
Seed Data
The seed script creates two tables in LanceDB - one for the catalog of document summaries, and another one - for vectorized documents' chunks. To run the seed script use the following command:
npm run seed -- --dbpath <PATH_TO_LOCAL_INDEX_DIR> --filesdir <PATH_TO_DOCS>
You can use sample data from the docs/ directory. Feel free to adjust the default summarization and embedding models in the config.ts file. If you need to recreate the index, simply rerun the seed script with the --overwrite option.
Catalog
- Document summary
- Metadata
Chunks
- Vectorized document chunk
- Metadata
🎯 Example Prompts
Try these prompts with Claude to explore the functionality:
"What documents do we have in the catalog?"
"Why is the US healthcare system so broken?"
📝 Available Tools
The server provides these tools for interaction with the index:
Catalog Tools
catalog_search: Search for relevant documents in the catalog
Chunks Tools
chunks_search: Find relevant chunks based on a specific document from the catalogall_chunks_search: Find relevant chunks from all known documents
📜 License
This project is licensed under the MIT License - see the LICENSE file for details.
Related Servers
Apple Health MCP
Query Apple Health data using natural language and SQL.
MCP Oracle Server
A server that provides tools to interact with an Oracle database.
Pipedrive MCP Server by CData
A read-only MCP server for Pipedrive, enabling LLMs to query live data using the CData JDBC Driver.
Supabase Memory Service
A memory service using Supabase PostgreSQL with pgvector for semantic search and knowledge graph storage.
CData Google Spanner
A read-only MCP server for Google Spanner, enabling LLMs to query live data.
Shardeum MCP Server
An MCP server for interacting with the Shardeum blockchain.
Cryptocurrency Daemon
An MCP server for interacting with cryptocurrency daemon RPC interfaces.
ChromaDB
Provides AI assistants with persistent memory using ChromaDB vector storage.
Ashare-MCP
A stock market data service for querying A-share market data from Sina and Tencent Finance.
Blackbaud FE NXT by CData
A read-only MCP server for Blackbaud FE NXT by CData, enabling LLMs to query live data. Requires a separate CData JDBC Driver.