LanceDB
Interact with on-disk documents using agentic RAG and hybrid search via LanceDB.
🗄️ LanceDB MCP Server for LLMS
A Model Context Protocol (MCP) server that enables LLMs to interact directly the documents that they have on-disk through agentic RAG and hybrid search in LanceDB. Ask LLMs questions about the dataset as a whole or about specific documents.
✨ Features
- 🔍 LanceDB-powered serverless vector index and document summary catalog.
- 📊 Efficient use of LLM tokens. The LLM itself looks up what it needs when it needs.
- 📈 Security. The index is stored locally so no data is transferred to the Cloud when using a local LLM.
🚀 Quick Start
To get started, create a local directory to store the index and add this configuration to your Claude Desktop config file:
MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"lancedb": {
"command": "npx",
"args": [
"lance-mcp",
"PATH_TO_LOCAL_INDEX_DIR"
]
}
}
}
Prerequisites
- Node.js 18+
- npx
- MCP Client (Claude Desktop App for example)
- Summarization and embedding models installed (see config.ts - by default we use Ollama models)
ollama pull snowflake-arctic-embed2ollama pull llama3.1:8b
Demo
Local Development Mode:
{
"mcpServers": {
"lancedb": {
"command": "node",
"args": [
"PATH_TO_LANCE_MCP/dist/index.js",
"PATH_TO_LOCAL_INDEX_DIR"
]
}
}
}
Use npm run build to build the project.
Use npx @modelcontextprotocol/inspector dist/index.js PATH_TO_LOCAL_INDEX_DIR to run the MCP tool inspector.
Seed Data
The seed script creates two tables in LanceDB - one for the catalog of document summaries, and another one - for vectorized documents' chunks. To run the seed script use the following command:
npm run seed -- --dbpath <PATH_TO_LOCAL_INDEX_DIR> --filesdir <PATH_TO_DOCS>
You can use sample data from the docs/ directory. Feel free to adjust the default summarization and embedding models in the config.ts file. If you need to recreate the index, simply rerun the seed script with the --overwrite option.
Catalog
- Document summary
- Metadata
Chunks
- Vectorized document chunk
- Metadata
🎯 Example Prompts
Try these prompts with Claude to explore the functionality:
"What documents do we have in the catalog?"
"Why is the US healthcare system so broken?"
📝 Available Tools
The server provides these tools for interaction with the index:
Catalog Tools
catalog_search: Search for relevant documents in the catalog
Chunks Tools
chunks_search: Find relevant chunks based on a specific document from the catalogall_chunks_search: Find relevant chunks from all known documents
📜 License
This project is licensed under the MIT License - see the LICENSE file for details.
Related Servers
DX MCP Server
Query your organizational data in DX Data Cloud using natural language.
Chronos
Interact with the Stellar blockchain to manage wallets, list tokens, query balances, and transfer funds.
CData Oracle Eloqua
A read-only MCP server to query live Oracle Eloqua data. Requires a separate CData JDBC Driver for Oracle Eloqua.
InterSystems IRIS
Interact with and automate InterSystems IRIS databases.
dbt CLI
An MCP server that wraps the dbt CLI, allowing AI agents to interact with dbt projects.
Kintone Lite
A lightweight server to connect AI assistants with Kintone applications and data.
Hologres
Connect to a Hologres instance, get table metadata, query and analyze data.
Metabase MCP Server
Integrates AI assistants with the Metabase business intelligence and analytics platform.
Supabase Next.js Server
A simple notes system for Next.js applications using Supabase as the backend.
BigQuery
Explore, query, and manage data in Google BigQuery.