NameChecker
Check the availability of domain names.
NameChecker MCP Server
A Model Context Protocol (MCP) server that provides AI assistants with domain name availability checking capabilities. This server enables AI models to check if domain names are available for registration and validate domain syntax in real-time.
šÆ Purpose
The NameChecker MCP Server bridges the gap between AI assistants and domain registration services by providing:
- Real-time Domain Availability Checking: Instant verification of domain name availability
- Domain Syntax Validation: RFC-compliant domain name format validation
- AI-Friendly Integration: Seamless integration with AI assistants through the MCP protocol
- Flexible Transport Options: Support for both stdio and Server-Sent Events (SSE) transports
š Available Tools
1. check_domain_availability
Checks if a domain name is available for registration.
Parameters:
domain(string, required): Domain name to check (with or without TLD)tld(string, optional): Top-level domain, defaults to "com"
Returns: Boolean indicating availability (true = available, false = unavailable)
Example Usage:
{
"name": "check_domain_availability",
"arguments": {
"domain": "my-awesome-startup",
"tld": "com"
}
}
2. validate_domain_syntax
Validates domain name syntax according to RFC standards.
Parameters:
domain(string, required): Domain name to validate
Returns: Object with validation results and details
Example Usage:
{
"name": "validate_domain_syntax",
"arguments": {
"domain": "my-domain.com"
}
}
Sample Response:
{
"valid": true,
"domain": "my-domain",
"tld": "com",
"full_domain": "my-domain.com",
"length": 13
}
š¦ Installation
Prerequisites
- Python 3.9 or higher
- pip (Python package manager)
Install from Source
# Clone the repository
git clone <repository-url>
cd namechecker-mcp
# Install in development mode
pip install -e ".[dev]"
Install Dependencies Only
pip install mcp httpx pydantic
š Usage
Command Line Options
# Run with default stdio transport
python main.py
# Run with SSE transport on port 8000
python main.py --transport sse --port 8000
# Run with custom settings
python main.py --transport stdio --log-level DEBUG --timeout 60
# Show help
python main.py --help
Available Arguments:
--transport: Transport protocol (stdioorsse, default:stdio)--port: Port number for SSE transport (default:8000)--log-level: Logging verbosity (DEBUG,INFO,WARNING,ERROR, default:INFO)--timeout: Request timeout in seconds (default:30)
MCP Client Configuration
To use this server with an MCP-compatible client (like Claude Desktop, Cline, or other AI assistants), add it to your MCP configuration file.
For Claude Desktop (config.json)
Location:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%/Claude/claude_desktop_config.json
Configuration:
{
"mcpServers": {
"namechecker": {
"command": "python",
"args": ["/path/to/namechecker-mcp/main.py"],
"env": {
"LOG_LEVEL": "INFO"
}
}
}
}
For Cline VSCode Extension
Add to your Cline MCP settings:
{
"mcpServers": {
"namechecker": {
"command": "python",
"args": ["/absolute/path/to/main.py"],
"cwd": "/absolute/path/to/namechecker-mcp"
}
}
}
For Custom MCP Clients
Stdio Transport Configuration:
{
"name": "namechecker",
"transport": {
"type": "stdio",
"command": "python",
"args": ["/path/to/main.py"]
}
}
SSE Transport Configuration:
{
"name": "namechecker",
"transport": {
"type": "sse",
"url": "http://localhost:8000/messages"
}
}
š§ Development
Project Structure
namechecker-mcp/
āāā main.py # Main MCP server implementation
āāā pyproject.toml # Project configuration and dependencies
āāā tests/ # Unit tests
ā āāā __init__.py
ā āāā test_domain_checker.py
āāā details/ # Project documentation
ā āāā PRD.md # Product Requirements Document
āāā .cursor/ # Cursor IDE rules
ā āāā rules/
āāā README.md # This file
Running Tests
# Install development dependencies
pip install -e ".[dev]"
# Run tests
pytest tests/ -v
# Run tests with coverage
pytest tests/ --cov=main --cov-report=html
Code Quality
# Format code
black .
# Lint code
ruff check .
# Type checking
mypy main.py
š Usage Examples
Example 1: Check Single Domain
# Through MCP client
result = await mcp_client.call_tool("check_domain_availability", {
"domain": "my-startup-idea"
})
# Returns: true or false
Example 2: Validate Domain Syntax
# Through MCP client
result = await mcp_client.call_tool("validate_domain_syntax", {
"domain": "my-domain.co.uk"
})
# Returns: {"valid": true, "domain": "my-domain", "tld": "co.uk", ...}
Example 3: Bulk Domain Checking
# Check multiple domains through AI assistant
domains = ["startup1.com", "startup2.net", "startup3.org"]
results = []
for domain in domains:
available = await mcp_client.call_tool("check_domain_availability", {
"domain": domain
})
results.append({"domain": domain, "available": available})
š Features
Current Features
- ā Domain availability checking via DNS resolution
- ā Mock WHOIS API integration (ready for real API)
- ā RFC-compliant domain syntax validation
- ā Stdio transport support
- ā SSE transport implementation
- ā Comprehensive input validation
- ā Error handling and logging
- ā Command-line interface
- ā Health check endpoint for SSE transport
- ā CORS support for web clients
š How It Works
- Domain Validation: Input domains are validated for proper format and syntax
- Availability Checking: The server uses multiple methods to check availability:
- Primary: WHOIS API services (currently mocked)
- Fallback: DNS resolution checking
- Result Processing: Results are returned as boolean values or detailed objects
- Error Handling: Comprehensive error handling with meaningful messages
šØ Limitations
- Mock WHOIS API: Currently uses a mock implementation for testing
- DNS-Based Checking: Fallback method may not be 100% accurate for all domains
- Rate Limiting: No built-in rate limiting (depends on external APIs)
š¤ Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
Development Guidelines
- Follow the coding standards defined in
.cursor/rules/ - Write tests for new functionality
- Update documentation as needed
- Use type hints for all functions
š License
This project is licensed under the MIT License - see the LICENSE file for details.
š Troubleshooting
Common Issues
1. "Module not found" errors
# Ensure dependencies are installed
pip install -e ".[dev]"
2. Permission denied
# Make sure the script is executable
chmod +x main.py
3. MCP client can't connect
- Verify the correct path in your MCP configuration
- Check that Python is available in your PATH
- Review logs for error messages
4. Domain checks always return False
- Check network connectivity
- Verify DNS resolution is working
- Review timeout settings
Debug Mode
# Run with detailed logging
python main.py --log-level DEBUG
š Related Resources
- Model Context Protocol Documentation
- Claude Desktop MCP Guide
- RFC 1035 - Domain Names
- Python MCP SDK
š Support
For questions, issues, or contributions:
- Create an issue in the GitHub repository
- Review the PRD document in
details/PRD.md - Check the development rules in
.cursor/rules/
Built with ā¤ļø for the AI community
Related Servers
Google Research
Perform advanced web research using Google Search, with intelligent content extraction and multi-source synthesis.
RAG Documentation MCP Server
Retrieve and process documentation using vector search to provide relevant context for AI assistants.
ęęę 大ę°ę®ęå”
Provides comprehensive information queries for enterprise qualification certificates, including honors, administrative licenses, and profiles.
Chromium CodeSearch Tools
Search Chromium source code using advanced Code Search syntax.
Pokemon TCG Card Search MCP
Search and display Pokemon Trading Card Game cards using the Pokemon TCG API.
Hunter.io
Find and verify professional email addresses with the Hunter.io API.
NRTSearch
Exposes Lucene-based search indexes to AI assistants through the NRTSearch MCP server.
Bing Webmaster Tools
Access Bing Webmaster Tools data, including search performance, crawl statistics, URL submission, and keyword research.
Paper Search MCP
Search and download academic papers from sources like arXiv, PubMed, and Google Scholar.
å±ä¼å¤§ę°ę®ęå”
Query comprehensive exhibition information, including enterprise participation records, venue details, and exhibition search.