AWS Athena MCP Server
An MCP server for querying and interacting with AWS Athena.
AWS Athena MCP Server
A simple, clean MCP (Model Context Protocol) server for AWS Athena integration. Execute SQL queries, discover schemas, and manage query executions through a standardized interface.
โจ Features
- Simple Setup - Get running in under 5 minutes
- Clean Architecture - Modular, well-tested, easy to understand
- Essential Tools - Query execution and schema discovery
- Type Safe - Full type hints and Pydantic models
- Async Support - Built for performance with async/await
- Good Defaults - Works out of the box with minimal configuration
๐ Quick Start
1. Install
# From PyPI with uv (recommended for Claude Desktop)
uv tool install aws-athena-mcp
# From PyPI with pip
pip install aws-athena-mcp
# Or from source
git clone https://github.com/ColeMurray/aws-athena-mcp
cd aws-athena-mcp
pip install -e .
2. Configure
Set the required environment variables:
# Required
export ATHENA_S3_OUTPUT_LOCATION=s3://your-bucket/athena-results/
# Optional (with defaults)
export AWS_REGION=us-east-1
export ATHENA_WORKGROUP=primary
export ATHENA_TIMEOUT_SECONDS=60
3. Run
# Start the MCP server (if installed with uv tool install)
aws-athena-mcp
# Or run directly with uv (without installing)
uv tool run aws-athena-mcp
# Or run directly with uvx (without installing)
uvx aws-athena-mcp
# Or run directly with Python
python -m athena_mcp.server
That's it! The server is now running and ready to accept MCP connections.
๐ค Claude Desktop Integration
To use this MCP server with Claude Desktop:
1. Install Claude Desktop
Download and install Claude Desktop if you haven't already.
2. Configure Claude Desktop
Add the following configuration to your claude_desktop_config.json
:
Location of config file:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- Windows:
%APPDATA%\Claude\claude_desktop_config.json
Configuration (Option 1 - Using uvx - Recommended):
{
"mcpServers": {
"aws-athena-mcp": {
"command": "uvx",
"args": [
"aws-athena-mcp"
],
"env": {
"ATHENA_S3_OUTPUT_LOCATION": "s3://your-bucket/athena-results/",
"AWS_REGION": "us-east-1",
"ATHENA_WORKGROUP": "primary",
"ATHENA_TIMEOUT_SECONDS": "60"
}
}
}
}
Configuration (Option 2 - Using installed tool):
{
"mcpServers": {
"aws-athena-mcp": {
"command": "aws-athena-mcp",
"env": {
"ATHENA_S3_OUTPUT_LOCATION": "s3://your-bucket/athena-results/",
"AWS_REGION": "us-east-1",
"ATHENA_WORKGROUP": "primary",
"ATHENA_TIMEOUT_SECONDS": "60"
}
}
}
}
Configuration (Option 3 - Using uv tool run):
{
"mcpServers": {
"aws-athena-mcp": {
"command": "uv",
"args": [
"tool",
"run",
"aws-athena-mcp"
],
"env": {
"ATHENA_S3_OUTPUT_LOCATION": "s3://your-bucket/athena-results/",
"AWS_REGION": "us-east-1",
"ATHENA_WORKGROUP": "primary",
"ATHENA_TIMEOUT_SECONDS": "60"
}
}
}
}
Recommended approach: Use Option 1 (uvx) for the most common MCP setup pattern. Option 2 (installed tool) offers better performance as it avoids package resolution on each startup.
3. Set AWS Credentials
Configure your AWS credentials using one of these methods:
# Method 1: Environment variables (add to your shell profile)
export AWS_ACCESS_KEY_ID=your-access-key
export AWS_SECRET_ACCESS_KEY=your-secret-key
# Method 2: AWS CLI
aws configure
# Method 3: AWS Profile
export AWS_PROFILE=your-profile
4. Restart Claude Desktop
Restart Claude Desktop to load the new MCP server configuration.
5. Verify Connection
In Claude Desktop, you should now be able to:
- Execute SQL queries against your Athena databases
- List tables and describe schemas
- Get query results and status
Example conversation:
You: "List all tables in my 'analytics' database"
Claude: I'll help you list the tables in your analytics database using the Athena MCP server.
[Uses list_tables tool]
๐ ๏ธ Automated Setup (Alternative)
For easier setup, you can use the included setup script:
# Clone the repository
git clone https://github.com/ColeMurray/aws-athena-mcp
cd aws-athena-mcp
# Run the setup script
python scripts/setup_claude_desktop.py
The script will:
- Check if uv is installed
- Guide you through configuration
- Update your Claude Desktop config file
- Verify AWS credentials
- Provide next steps
You can also copy the example configuration:
cp examples/claude_desktop_config.json ~/Library/Application\ Support/Claude/claude_desktop_config.json
# Then edit the file to add your S3 bucket and AWS settings
๐ง Configuration
The server uses environment variables for configuration:
Variable | Required | Default | Description |
---|---|---|---|
ATHENA_S3_OUTPUT_LOCATION | โ | - | S3 path for query results |
AWS_REGION | โ | us-east-1 | AWS region |
ATHENA_WORKGROUP | โ | None | Athena workgroup |
ATHENA_TIMEOUT_SECONDS | โ | 60 | Query timeout |
AWS Credentials
Configure AWS credentials using any of these methods:
# Method 1: Environment variables
export AWS_ACCESS_KEY_ID=your-access-key
export AWS_SECRET_ACCESS_KEY=your-secret-key
# Method 2: AWS CLI
aws configure
# Method 3: AWS Profile
export AWS_PROFILE=your-profile
# Method 4: IAM roles (for EC2/Lambda)
# No configuration needed
๐ Security
Environment Variables
โ ๏ธ NEVER commit credentials to version control!
Use the provided example file to set up your environment:
# Copy the example file
cp examples/environment_variables.example .env
# Edit with your values
nano .env
# Make sure .env is in .gitignore (it already is)
echo ".env" >> .gitignore
AWS Credentials Best Practices
-
Use IAM Roles (recommended for production):
# No credentials needed - uses instance/container role export ATHENA_S3_OUTPUT_LOCATION=s3://your-bucket/results/
-
Use AWS CLI profiles (recommended for development):
aws configure --profile athena-mcp export AWS_PROFILE=athena-mcp
-
Use temporary credentials when possible:
aws sts assume-role --role-arn arn:aws:iam::123456789012:role/AthenaRole \ --role-session-name athena-mcp-session
-
Avoid long-term access keys in environment variables
Required AWS Permissions
Your AWS credentials need these minimum permissions:
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"athena:StartQueryExecution",
"athena:GetQueryExecution",
"athena:GetQueryResults",
"athena:ListWorkGroups",
"athena:GetWorkGroup"
],
"Resource": "*"
},
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:PutObject",
"s3:DeleteObject"
],
"Resource": "arn:aws:s3:::your-bucket/athena-results/*"
},
{
"Effect": "Allow",
"Action": [
"s3:ListBucket"
],
"Resource": "arn:aws:s3:::your-bucket"
},
{
"Effect": "Allow",
"Action": [
"glue:GetDatabase",
"glue:GetDatabases",
"glue:GetTable",
"glue:GetTables"
],
"Resource": "*"
}
]
}
SQL Injection Protection
The server includes built-in SQL injection protection:
- Query validation - Dangerous patterns are blocked
- Input sanitization - Database/table names are validated
- Query size limits - Prevents resource exhaustion
- Parameterized queries - When possible
Network Security
For production deployments:
- Use VPC endpoints for AWS services
- Restrict network access to the MCP server
- Use TLS for all communications
- Monitor and log all queries
Monitoring and Auditing
Enable CloudTrail logging for Athena:
{
"eventVersion": "1.05",
"userIdentity": {...},
"eventTime": "2024-01-01T12:00:00Z",
"eventSource": "athena.amazonaws.com",
"eventName": "StartQueryExecution",
"resources": [...]
}
๐ ๏ธ Available Tools
The server provides these MCP tools:
Query Execution
run_query
- Execute SQL queries against Athenaget_status
- Check query execution statusget_result
- Get results for completed queries
Schema Discovery
list_tables
- List all tables in a databasedescribe_table
- Get detailed table schema
๐ Usage Examples
Basic Query Execution
# Using the MCP client (pseudo-code)
result = await mcp_client.call_tool("run_query", {
"database": "default",
"query": "SELECT * FROM my_table LIMIT 10",
"max_rows": 10
})
Schema Discovery
# List tables
tables = await mcp_client.call_tool("list_tables", {
"database": "default"
})
# Describe a table
schema = await mcp_client.call_tool("describe_table", {
"database": "default",
"table_name": "my_table"
})
Handling Timeouts
# Long-running query
result = await mcp_client.call_tool("run_query", {
"database": "default",
"query": "SELECT COUNT(*) FROM large_table"
})
if "query_execution_id" in result:
# Query timed out, check status later
status = await mcp_client.call_tool("get_status", {
"query_execution_id": result["query_execution_id"]
})
๐งช Testing
Test your configuration:
# Test configuration and AWS connection
python scripts/test_connection.py
# Run the test suite
pytest
# Run with coverage
pytest --cov=athena_mcp
๐๏ธ Development
Setup Development Environment
# Clone and install in development mode
git clone https://github.com/ColeMurray/aws-athena-mcp
cd aws-athena-mcp
pip install -e ".[dev]"
# Run tests
pytest
# Format code
black src tests
isort src tests
# Type checking
mypy src
Project Structure
aws-athena-mcp/
โโโ src/athena_mcp/ # Main package
โ โโโ server.py # MCP server
โ โโโ athena.py # AWS Athena client
โ โโโ config.py # Configuration
โ โโโ models.py # Data models
โโโ src/tools/ # MCP tools
โ โโโ query.py # Query tools
โ โโโ schema.py # Schema tools
โโโ tests/ # Test suite
โโโ examples/ # Usage examples
โโโ scripts/ # Utility scripts
โโโ docs/ # Documentation
Adding New Tools
- Create tool functions in
src/tools/
- Register them in the appropriate module
- Add tests in
tests/
- Update documentation
Example:
# In src/tools/query.py
def register_query_tools(mcp, athena_client):
@mcp.tool()
async def my_new_tool(param: str) -> str:
"""My new tool description."""
# Implementation here
return result
๐ Troubleshooting
Common Issues
Configuration Error
โ Configuration error: ATHENA_S3_OUTPUT_LOCATION environment variable is required
Solution: Set the required environment variable:
export ATHENA_S3_OUTPUT_LOCATION=s3://your-bucket/results/
AWS Credentials Error
โ AWS credentials error: AWS credentials not found
Solution: Configure AWS credentials (see Configuration section)
Permission Denied
โ AWS credentials error: AWS credentials are invalid or insufficient permissions
Solution: Ensure your AWS credentials have these permissions:
athena:StartQueryExecution
athena:GetQueryExecution
athena:GetQueryResults
athena:ListWorkGroups
s3:GetObject
,s3:PutObject
on your S3 bucket
Debug Mode
Enable debug logging:
export PYTHONPATH=src
python -c "
import logging
logging.basicConfig(level=logging.DEBUG)
from athena_mcp.server import main
main()
"
๐ License
MIT License - see LICENSE file for details.
๐ค Contributing
Contributions welcome! Please read our contributing guidelines and:
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Submit a pull request
๐ Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Documentation: docs/
Made with โค๏ธ for the MCP community
Related Servers
MCP KQL Server
Execute KQL queries using Azure authentication. Requires Azure CLI login.
Octodet Elasticsearch MCP Server
An MCP server for interacting with Elasticsearch clusters, enabling LLM-powered applications to search, update, and manage data.
CData Sage 200
A read-only MCP server for querying live Sage 200 data, powered by the CData JDBC Driver.
Neo4j MCP Server
A read-only query service for Neo4j graph databases.
JDBC-MCP
Enables AI assistants to interact with various databases through JDBC connections.
NSE Ticker MCP Server
Provides access to National Stock Exchange (NSE) data using the Upstox API.
Engram MCP Server
Engram is a hosted MCP server that provides reliable memory for AI agents:
CData MCP Server for Microsoft SQL Server
An MCP server for Microsoft SQL Server by CData. Requires a separately licensed CData JDBC Driver.
Avro MCP Server by CData
A read-only MCP server for Avro data sources, powered by the CData JDBC Driver.
Multi Database MCP Server
An MCP server that provides AI assistants with structured access to multiple databases simultaneously.