Chroma
A vector database server powered by Chroma, enabling semantic document search, metadata filtering, and document management.
Chroma MCP Server
A Model Context Protocol (MCP) server implementation that provides vector database capabilities through Chroma. This server enables semantic document search, metadata filtering, and document management with persistent storage.
Requirements
- Python 3.8+
- Chroma 0.4.0+
- MCP SDK 0.1.0+
Components
Resources
The server provides document storage and retrieval through Chroma's vector database:
- Stores documents with content and metadata
- Persists data in
src/chroma/datadirectory - Supports semantic similarity search
Tools
The server implements CRUD operations and search functionality:
Document Management
-
create_document: Create a new document- Required:
document_id,content - Optional:
metadata(key-value pairs) - Returns: Success confirmation
- Error: Already exists, Invalid input
- Required:
-
read_document: Retrieve a document by ID- Required:
document_id - Returns: Document content and metadata
- Error: Not found
- Required:
-
update_document: Update an existing document- Required:
document_id,content - Optional:
metadata - Returns: Success confirmation
- Error: Not found, Invalid input
- Required:
-
delete_document: Remove a document- Required:
document_id - Returns: Success confirmation
- Error: Not found
- Required:
-
list_documents: List all documents- Optional:
limit,offset - Returns: List of documents with content and metadata
- Optional:
Search Operations
search_similar: Find semantically similar documents- Required:
query - Optional:
num_results,metadata_filter,content_filter - Returns: Ranked list of similar documents with distance scores
- Error: Invalid filter
- Required:
Features
- Semantic Search: Find documents based on meaning using Chroma's embeddings
- Metadata Filtering: Filter search results by metadata fields
- Content Filtering: Additional filtering based on document content
- Persistent Storage: Data persists in local directory between server restarts
- Error Handling: Comprehensive error handling with clear messages
- Retry Logic: Automatic retries for transient failures
Installation
- Install dependencies:
uv venv
uv sync --dev --all-extras
Configuration
Claude Desktop
Add the server configuration to your Claude Desktop config:
Windows: C:\Users\<username>\AppData\Roaming\Claude\claude_desktop_config.json
MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json
{
"mcpServers": {
"chroma": {
"command": "uv",
"args": [
"--directory",
"C:/MCP/server/community/chroma",
"run",
"chroma"
]
}
}
}
Data Storage
The server stores data in:
- Windows:
src/chroma/data - MacOS/Linux:
src/chroma/data
Usage
- Start the server:
uv run chroma
- Use MCP tools to interact with the server:
# Create a document
create_document({
"document_id": "ml_paper1",
"content": "Convolutional neural networks improve image recognition accuracy.",
"metadata": {
"year": 2020,
"field": "computer vision",
"complexity": "advanced"
}
})
# Search similar documents
search_similar({
"query": "machine learning models",
"num_results": 2,
"metadata_filter": {
"year": 2020,
"field": "computer vision"
}
})
Error Handling
The server provides clear error messages for common scenarios:
Document already exists [id=X]Document not found [id=X]Invalid input: Missing document_id or contentInvalid filterOperation failed: [details]
Development
Testing
- Run the MCP Inspector for interactive testing:
npx @modelcontextprotocol/inspector uv --directory C:/MCP/server/community/chroma run chroma
- Use the inspector's web interface to:
- Test CRUD operations
- Verify search functionality
- Check error handling
- Monitor server logs
Building
- Update dependencies:
uv compile pyproject.toml
- Build package:
uv build
Contributing
Contributions are welcome! Please read our Contributing Guidelines for details on:
- Code style
- Testing requirements
- Pull request process
License
This project is licensed under the MIT License - see the LICENSE file for details.
Related Servers
MCP PGVector Server
Provides semantic search capabilities for PostgreSQL databases using the pgvector extension, with support for multiple embedding providers.
ODBC Server via PyODBC
An MCP server for connecting to databases like Virtuoso using ODBC drivers via pyodbc.
LoL Data MCP Server
Provides real-time, structured access to League of Legends game data, including champions, items, abilities, game mechanics, and patch information.
College Football Data
Access college football statistics from the College Football Data API.
Quanti: connectors MCP
Unify your marketing team around one AI-powered source of truth. Quanti connects your marketing data to your warehouse. Execute SQL queries on BigQuery, explore table schemas, discover pre-built use cases, and analyze performance across Google Analytics, Google Ads, Meta Ads, TikTok, affiliate networks and more. all through natural conversation
Metabase Server
Integrates with Metabase for data visualization and business intelligence. Requires METABASE_URL, METABASE_USERNAME, and METABASE_PASSWORD environment variables.
Teradata MCP Server
Interact with Teradata databases for data queries and business intelligence.
Pokemon
Provides access to a comprehensive Pokemon database through a standardized MCP interface.
MCP Memory Server - Python Implementation
A Python implementation of the MCP memory server for knowledge graph storage and retrieval, using JSONL files for persistence.
MCP Variance Log
Logs statistical variations and unusual events in conversation structures to a SQLite database.