Chroma
A vector database server powered by Chroma, enabling semantic document search, metadata filtering, and document management.
Chroma MCP Server
A Model Context Protocol (MCP) server implementation that provides vector database capabilities through Chroma. This server enables semantic document search, metadata filtering, and document management with persistent storage.
Requirements
- Python 3.8+
- Chroma 0.4.0+
- MCP SDK 0.1.0+
Components
Resources
The server provides document storage and retrieval through Chroma's vector database:
- Stores documents with content and metadata
- Persists data in
src/chroma/datadirectory - Supports semantic similarity search
Tools
The server implements CRUD operations and search functionality:
Document Management
-
create_document: Create a new document- Required:
document_id,content - Optional:
metadata(key-value pairs) - Returns: Success confirmation
- Error: Already exists, Invalid input
- Required:
-
read_document: Retrieve a document by ID- Required:
document_id - Returns: Document content and metadata
- Error: Not found
- Required:
-
update_document: Update an existing document- Required:
document_id,content - Optional:
metadata - Returns: Success confirmation
- Error: Not found, Invalid input
- Required:
-
delete_document: Remove a document- Required:
document_id - Returns: Success confirmation
- Error: Not found
- Required:
-
list_documents: List all documents- Optional:
limit,offset - Returns: List of documents with content and metadata
- Optional:
Search Operations
search_similar: Find semantically similar documents- Required:
query - Optional:
num_results,metadata_filter,content_filter - Returns: Ranked list of similar documents with distance scores
- Error: Invalid filter
- Required:
Features
- Semantic Search: Find documents based on meaning using Chroma's embeddings
- Metadata Filtering: Filter search results by metadata fields
- Content Filtering: Additional filtering based on document content
- Persistent Storage: Data persists in local directory between server restarts
- Error Handling: Comprehensive error handling with clear messages
- Retry Logic: Automatic retries for transient failures
Installation
- Install dependencies:
uv venv
uv sync --dev --all-extras
Configuration
Claude Desktop
Add the server configuration to your Claude Desktop config:
Windows: C:\Users\<username>\AppData\Roaming\Claude\claude_desktop_config.json
MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json
{
"mcpServers": {
"chroma": {
"command": "uv",
"args": [
"--directory",
"C:/MCP/server/community/chroma",
"run",
"chroma"
]
}
}
}
Data Storage
The server stores data in:
- Windows:
src/chroma/data - MacOS/Linux:
src/chroma/data
Usage
- Start the server:
uv run chroma
- Use MCP tools to interact with the server:
# Create a document
create_document({
"document_id": "ml_paper1",
"content": "Convolutional neural networks improve image recognition accuracy.",
"metadata": {
"year": 2020,
"field": "computer vision",
"complexity": "advanced"
}
})
# Search similar documents
search_similar({
"query": "machine learning models",
"num_results": 2,
"metadata_filter": {
"year": 2020,
"field": "computer vision"
}
})
Error Handling
The server provides clear error messages for common scenarios:
Document already exists [id=X]Document not found [id=X]Invalid input: Missing document_id or contentInvalid filterOperation failed: [details]
Development
Testing
- Run the MCP Inspector for interactive testing:
npx @modelcontextprotocol/inspector uv --directory C:/MCP/server/community/chroma run chroma
- Use the inspector's web interface to:
- Test CRUD operations
- Verify search functionality
- Check error handling
- Monitor server logs
Building
- Update dependencies:
uv compile pyproject.toml
- Build package:
uv build
Contributing
Contributions are welcome! Please read our Contributing Guidelines for details on:
- Code style
- Testing requirements
- Pull request process
License
This project is licensed under the MIT License - see the LICENSE file for details.
Related Servers
Qdrant MCP
Semantic search using the Qdrant vector database.
DEMO Country MCP Server
A modular server providing tools for country and state lookups, usable as a CLI or plug-in agent.
Redshift MCP Server
An MCP server for Amazon Redshift, allowing AI assistants to interact with Redshift databases.
Metabase MCP Server
Interact with Metabase, the open-source business intelligence platform, using Large Language Models.
MCP Memory Server
An advanced memory system for Claude Desktop that provides persistent memory using MCP. Requires an Azure Cosmos DB account and an OpenAI API key.
MongoDB Movie Database FastMCP Tools
A server for querying and analyzing the MongoDB sample_mflix movie database.
OpenAlex Author Disambiguation
Disambiguate authors and resolve institutions using the OpenAlex.org API.
DynamoDB Read-Only MCP
A read-only server to query AWS DynamoDB databases using the Model Context Protocol (MCP).
Binance Cryptocurrency MCP
Access real-time Binance cryptocurrency market data, including prices, order books, and trading history.
MCP SQLite Server
A Node.js MCP server for interacting with local SQLite databases, runnable via npx.