Ghidra MCP Server
Exposes binary analysis data from Ghidra, including functions and pseudocode, to LLMs.
🔍 Ghidra MCP Server
This project lets you use Ghidra in headless mode to extract rich binary analysis data (functions, pseudocode, structs, enums, etc.) into a JSON file, and expose it to LLMs like Claude via Model Context Protocol (MCP).
It turns Ghidra into an interactive reverse-engineering backend.
🚀 Features
- Decompiles a binary using Ghidra headless mode
- Extracts:
- Function pseudocode, names, parameters, variables, strings, comments
- Data structures (structs), enums, and function definitions
- Outputs to
ghidra_context.json - MCP server exposes tools like:
list_functions(),get_pseudocode(name)list_structures(),get_structure(name)list_enums(),get_enum(name)list_function_definitions(),get_function_definition(name)
⚙️ System Requirements
- macOS (tested)
- Python 3.10+
- Ghidra 11.3.1+
- Java 21 (Temurin preferred)
- MCP client (e.g. Claude Desktop)
mcpCLI (install viapip install mcp)
🧪 Installation & Setup
✅ 1. Install Java 21 (REQUIRED by Ghidra 11.3.1)
brew install --cask temurin@21
Then set it:
export JAVA_HOME=$(/usr/libexec/java_home -v 21)
echo 'export JAVA_HOME=$(/usr/libexec/java_home -v 21)' >> ~/.zshrc
source ~/.zshrc
Check it:
java -version
Should say: openjdk version "21.0.x"...
✅ 2. Install Ghidra
Download and extract Ghidra 11.3.1
✅ 3. Set up the project
cd ghidra_mcp
gcc -Wall crackme.c -o crackme
✅ 4. Install the server via MCP CLI
mcp install main.py
This registers the MCP server so Claude or other clients can access it.
✅ 5. Run in dev mode (for testing)
mcp dev main.py
This enables hot reload and developer logs.
🛰️ Tools Available
| Tool | Description |
|---|---|
setup_context(...) | Run Ghidra on a binary |
list_functions() | All functions |
get_pseudocode(name) | Decompiled pseudocode |
list_structures() | All structs |
get_structure(name) | Details of a struct |
list_enums() | All enums |
get_enum(name) | Enum values |
list_function_definitions() | All function prototypes |
get_function_definition() | Return type & args |
Sample Promot
Analyze the binary file located at <BINARY_PATH> using Ghidra installed at <GHIDRA_PATH>. First, set up the analysis context using both paths, then list all functions in the binary. Examine the main entry point function and provide a high-level overview of what the program does.
🧠 Common Issues & Fixes
❌ Ghidra fails with “unsupported Java version”
➡️ Fix: Install Java 21, not 17 or 24:
brew install --cask temurin@21
export JAVA_HOME=$(/usr/libexec/java_home -v 21)
❌ spawn uv ENOENT (Claude Desktop can't find your UV binary)
➡️ Claude can't locate uv by name. To fix:
- Run in your terminal:
which uv
Example output:
/Users/yourname/.cargo/bin/uv
- Open your Claude Desktop config file:
open ~/Library/Application\ Support/Claude/claude_desktop_config.json
- Update it like so:
{
"mcpServers": {
"ghidra": {
"command": "/Users/yourname/.cargo/bin/uv",
"args": [
"--directory",
"/Users/yourname/Documents/ghidra_mcp",
"run",
"main.py"
]
}
}
}
- Restart Claude Desktop. You should now see your custom MCP tools.
❌ The operation couldn’t be completed. Unable to locate a Java Runtime.
➡️ Fix: Java not installed or JAVA_HOME is unset. Follow setup instructions above.
📂 Project Structure
| File | Purpose |
|---|---|
main.py | MCP server with tools |
export_context.py | Ghidra script that extracts JSON |
crackme.c | Sample C binary |
crackme | Compiled binary to test |
👨💻 Author
Related Servers
vLEI.wiki MCP
Turns the Agent into a vLEI/KERI protocol expert
stdout-mcp-server
Captures and manages stdout logs from multiple processes via a named pipe system for real-time debugging and analysis.
DreamFactory MCP
An MCP server for integrating with the DreamFactory API to manage and access data sources.
Harness
Access and interact with Harness platform data, including pipelines, repositories, logs, and artifact registries.
SVG to PNG MCP Server
A server that converts SVG code to PNG images using the cairosvg library.
llm-mcp
A Ruby gem for integrating Large Language Models (LLMs) via the Model Context Protocol (MCP) into development workflows.
MCP Builder
A Python-based server to install and configure other MCP servers from PyPI, npm, or local directories.
RunwayML + Luma AI
Interact with the RunwayML and Luma AI APIs for video and image generation tasks.
Locust MCP Server
An MCP server for running Locust load tests. Configure test parameters like host, users, and spawn rate via environment variables.
Cookiecutter MCP UV Container
A Cookiecutter template for creating MCP servers with Apple container support and configurable transport methods.