Amazon Neptune
Query Amazon Neptune databases using openCypher, Gremlin, and SPARQL. Supports both Neptune Database and Neptune Analytics.
AWS Labs Amazon Neptune MCP Server
An Amazon Neptune MCP server that allows for fetching status, schema, and querying using openCypher and Gremlin for Neptune Database and openCypher for Neptune Analytics.
Features
The Amazon Neptune MCP Server provides the following capabilities:
- Run Queries: Execute openCypher and/or Gremlin queries against the configured database
- Schema: Get the schema in the configured graph as a text string
- Status: Find if the graph is "Available" or "Unavailable" to your server. This is useful in helping to ensure that the graph is connected.
AWS Requirements
- AWS CLI Configuration: You must have the AWS CLI configured with credentials and an AWS_PROFILE that has access to Amazon Neptune
- Amazon Neptune: You must have at least one Amazon Neptune Database or Amazon Neptune Analytics graph.
- IAM Permissions: Your IAM role/user must have appropriate permissions to:
- Access Amazon Neptune
- Query Amazon Neptune
- Access: The location where you are running the server must have access to the Amazon Neptune instance. Neptune Database resides in a private VPC so access into the private VPC. Neptune Analytics can be access either using a public endpoint, if configured, or the access will be needed to the private endpoint.
Note: This server will run any query sent to it, which could include both mutating and read-only actions. Properly configuring the permissions of the role to allow/disallow specific data plane actions as specified here:
Prerequisites
- Install
uvfrom Astral or the GitHub README - Install Python using
uv python install 3.10
Installation
Below is an example of how to configure your MCP client, although different clients may require a different format.
{
"mcpServers": {
"Neptune Query": {
"command": "uvx",
"args": ["awslabs.amazon-neptune-mcp-server@latest"],
"env": {
"FASTMCP_LOG_LEVEL": "INFO",
"NEPTUNE_ENDPOINT": "<INSERT NEPTUNE ENDPOINT IN FORMAT SPECIFIED BELOW>"
}
}
}
}
Docker Configuration
After building with docker build -t awslabs/amazon-neptune-mcp-server .:
{
"mcpServers": {
"awslabs.amazon-neptune-mcp-server": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"awslabs/amazon-neptune-mcp-server"
],
"env": {
"FASTMCP_LOG_LEVEL": "INFO",
"NEPTUNE_ENDPOINT": "<INSERT NEPTUNE ENDPOINT IN FORMAT SPECIFIED BELOW>"
},
"disabled": false,
"autoApprove": []
}
}
}
When specifying the Neptune Endpoint the following formats are expected:
For Neptune Database:
neptune-db://<Cluster Endpoint>
For Neptune Analytics:
neptune-graph://<graph identifier>
Related Servers
Redis
A server for interacting with Redis databases.
Unofficial UniProt MCP Server
Access the UniProt protein database with specialized bioinformatics tools for protein research, comparative genomics, and structural biology.
AGI MCP Server
Provides persistent memory for AI systems to enable continuity of consciousness, using an external PostgreSQL database.
CData Oracle SCM
A read-only MCP server for querying live Oracle SCM data, powered by the CData JDBC Driver.
Prisma MCP
Manage Prisma Postgres databases and backups using AI agents via local or remote servers.
ODBC Server via PyODBC
An MCP server for connecting to databases like Virtuoso using ODBC drivers via pyodbc.
Database
Universal database MCP server supporting multiple database types including PostgreSQL, Redshift, CockroachDB, MySQL, RDS MySQL, Microsoft SQL Server, BigQuery, Oracle DB, and SQLite
OceanBase MCP Server
Interact with OceanBase databases, allowing AI assistants to list tables, read data, and execute SQL queries securely.
MongoDB That Works
A MongoDB MCP server with schema discovery and field validation. Requires a MONGODB_URI environment variable.
Baserow
Read and write access to your Baserow tables.