Data Pilot (Snowflake)
A comprehensive Model Context Protocol (MCP) server for interacting with Snowflake using natural language and AI.
DataPilot MCP Server
Navigate your data with AI guidance. A comprehensive Model Context Protocol (MCP) server for interacting with Snowflake using natural language and AI. Built with FastMCP 2.0 and OpenAI integration.
Features
šļø Core Database Operations
- execute_sql - Execute SQL queries with results
- list_databases - List all accessible databases
- list_schemas - List schemas in a database
- list_tables - List tables in a database/schema
- describe_table - Get detailed table column information
- get_table_sample - Retrieve sample data from tables
š Warehouse Management
- list_warehouses - List all available warehouses
- get_warehouse_status - Get current warehouse, database, and schema status
š¤ AI-Powered Features
- natural_language_to_sql - Convert natural language questions to SQL queries
- analyze_query_results - AI-powered analysis of query results
- suggest_query_optimizations - Get optimization suggestions for SQL queries
- explain_query - Plain English explanations of SQL queries
- generate_table_insights - AI-generated insights about table data
š Resources (Data Access)
snowflake://databases- Access database listsnowflake://schemas/{database}- Access schema listsnowflake://tables/{database}/{schema}- Access table listsnowflake://table/{database}/{schema}/{table}- Access table details
š Prompts (Templates)
- sql_analysis_prompt - Templates for SQL analysis
- data_exploration_prompt - Templates for data exploration
- sql_optimization_prompt - Templates for query optimization
Installation
-
Clone and setup the project:
git clone <repository-url> cd datapilot python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate -
Install dependencies:
pip install -r requirements.txt -
Configure environment variables:
cp env.template .env # Edit .env with your credentials
Configuration
Environment Variables
Create a .env file with the following configuration:
# Required: Snowflake Connection
# Account examples:
# - ACCOUNT-LOCATOR.snowflakecomputing.com (recommended)
# - ACCOUNT-LOCATOR.region.cloud
# - organization-account_name
SNOWFLAKE_ACCOUNT=ACCOUNT-LOCATOR.snowflakecomputing.com
SNOWFLAKE_USER=your_username
SNOWFLAKE_PASSWORD=your_password
# Optional: Default Snowflake Context
SNOWFLAKE_WAREHOUSE=your_warehouse_name
SNOWFLAKE_DATABASE=your_database_name
SNOWFLAKE_SCHEMA=your_schema_name
SNOWFLAKE_ROLE=your_role_name
# Required: OpenAI API
OPENAI_API_KEY=your_openai_api_key
OPENAI_MODEL=gpt-4 # Optional, defaults to gpt-4
Snowflake Account Setup
-
Get your Snowflake account identifier - Multiple formats supported:
- Recommended:
ACCOUNT-LOCATOR.snowflakecomputing.com(e.g.,SCGEENJ-UR66679.snowflakecomputing.com) - Regional:
ACCOUNT-LOCATOR.region.cloud(e.g.,xy12345.us-east-1.aws) - Legacy:
organization-account_name
- Recommended:
-
Ensure your user has appropriate permissions:
USAGEon warehouses, databases, and schemasSELECTon tables for queryingSHOWprivileges for listing objects
Usage
Running the Server
Method 1: Direct execution
python -m src.main
Method 2: Using FastMCP CLI
fastmcp run src/main.py
Method 3: Development mode with auto-reload
fastmcp dev src/main.py
Connecting to MCP Clients
Claude Desktop
Add to your Claude Desktop configuration:
{
"mcpServers": {
"datapilot": {
"command": "python",
"args": ["-m", "src.main"],
"cwd": "/path/to/datapilot",
"env": {
"SNOWFLAKE_ACCOUNT": "your_account",
"SNOWFLAKE_USER": "your_user",
"SNOWFLAKE_PASSWORD": "your_password",
"OPENAI_API_KEY": "your_openai_key"
}
}
}
}
Using FastMCP Client
from fastmcp import Client
async def main():
async with Client("python -m src.main") as client:
# List databases
databases = await client.call_tool("list_databases")
print("Databases:", databases)
# Natural language to SQL
result = await client.call_tool("natural_language_to_sql", {
"question": "Show me the top 10 customers by revenue",
"database": "SALES_DB",
"schema": "PUBLIC"
})
print("Generated SQL:", result)
Example Usage
1. Natural Language Query
# Ask a question in natural language
question = "What are the top 5 products by sales volume last month?"
sql = await client.call_tool("natural_language_to_sql", {
"question": question,
"database": "SALES_DB",
"schema": "PUBLIC"
})
print(f"Generated SQL: {sql}")
2. Execute and Analyze
# Execute a query and get AI analysis
analysis = await client.call_tool("analyze_query_results", {
"query": "SELECT product_name, SUM(quantity) as total_sales FROM sales GROUP BY product_name ORDER BY total_sales DESC LIMIT 10",
"results_limit": 100,
"analysis_type": "summary"
})
print(f"Analysis: {analysis}")
3. Table Insights
# Get AI-powered insights about a table
insights = await client.call_tool("generate_table_insights", {
"table_name": "SALES_DB.PUBLIC.CUSTOMERS",
"sample_limit": 50
})
print(f"Table insights: {insights}")
4. Query Optimization
# Get optimization suggestions
optimizations = await client.call_tool("suggest_query_optimizations", {
"query": "SELECT * FROM large_table WHERE date_column > '2023-01-01'"
})
print(f"Optimization suggestions: {optimizations}")
Architecture
āāāāāāāāāāāāāāāāāāā āāāāāāāāāāāāāāāāāāā āāāāāāāāāāāāāāāāāāā
ā MCP Client ā ā FastMCP ā ā Snowflake ā
ā (Claude/etc) āāāāāŗā Server āāāāāŗā Database ā
āāāāāāāāāāāāāāāāāāā āāāāāāāāāāāāāāāāāāā āāāāāāāāāāāāāāāāāāā
ā
ā¼
āāāāāāāāāāāāāāāāāāā
ā OpenAI API ā
ā (GPT-4) ā
āāāāāāāāāāāāāāāāāāā
Project Structure
datapilot/
āāā src/
ā āāā __init__.py
ā āāā main.py # Main FastMCP server
ā āāā models.py # Pydantic data models
ā āāā snowflake_client.py # Snowflake connection & operations
ā āāā openai_client.py # OpenAI integration
āāā requirements.txt # Python dependencies
āāā env.template # Environment variables template
āāā README.md # This file
Development
Adding New Tools
- Define your tool function in
src/main.py:
@mcp.tool()
async def my_new_tool(param: str, ctx: Context) -> str:
"""Description of what the tool does"""
await ctx.info(f"Processing: {param}")
# Your logic here
return "result"
- Add appropriate error handling and logging
- Test with FastMCP dev mode:
fastmcp dev src/main.py
Adding New Resources
@mcp.resource("snowflake://my-resource/{param}")
async def my_resource(param: str) -> Dict[str, Any]:
"""Resource description"""
# Your logic here
return {"data": "value"}
Troubleshooting
Common Issues
-
Connection Errors
- Verify Snowflake credentials in
.env - Check network connectivity
- Ensure user has required permissions
- Verify Snowflake credentials in
-
OpenAI Errors
- Verify
OPENAI_API_KEYis set correctly - Check API quota and billing
- Ensure model name is correct
- Verify
-
Import Errors
- Activate virtual environment
- Install all requirements:
pip install -r requirements.txt - Run from project root directory
Logging
Enable debug logging:
LOG_LEVEL=DEBUG
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
License
This project is licensed under the MIT License.
Support
For issues and questions:
- Check the troubleshooting section
- Review FastMCP documentation: https://gofastmcp.com/
- Open an issue in the repository
Related Servers
Dremio
Integrate Large Language Models (LLMs) with Dremio, a data lakehouse platform.
Simple Memory MCP
A memory management system for AI assistants to store, retrieve, and manage user information using a local database.
LanceDB
A vector database server for storing, searching, and managing vector embeddings.
Dynamics 365 MCP Server by CData
A read-only MCP server by CData that enables LLMs to query live data from Dynamics 365. Requires the CData JDBC Driver for Dynamics 365.
MarkLogic MCP Server by CData
A read-only MCP server by CData for querying live MarkLogic data with LLMs. Requires a separate CData JDBC Driver.
MCP Microsoft SQL Server
An MCP server for integrating with Microsoft SQL Server databases.
Bankless Onchain
Interact with blockchain data using the Bankless API.
Tinybird
Interact with Tinybird serverless ClickHouse platform
Simple PostgreSQL MCP Server
An MCP server for executing SQL queries on PostgreSQL databases with configurable permissions.
Sefaria Jewish Library MCP Server
Provides access to Jewish texts from the Sefaria library.