MCP KQL Server
Execute KQL queries using Azure authentication. Requires Azure CLI login.
MCP KQL Server
AI-Powered KQL Query Execution with Intelligent Schema Memory
A Model Context Protocol (MCP) server that provides intelligent KQL (Kusto Query Language) query execution with AI-powered schema caching and context assistance for Azure Data Explorer clusters.
š¬ Demo
Watch a quick demo of the MCP KQL Server in action:
š Features
-
execute_kql_query:- Natural Language to KQL: Generate KQL queries from natural language descriptions.
- Direct KQL Execution: Execute raw KQL queries.
- Multiple Output Formats: Supports JSON, CSV, and table formats.
- Live Schema Validation: Ensures query accuracy by using live schema discovery.
-
schema_memory:- Schema Discovery: Discover and cache schemas for tables.
- Database Exploration: List all tables within a database.
- AI Context: Get AI-driven context for tables.
- Analysis Reports: Generate reports with visualizations.
- Cache Management: Clear or refresh the schema cache.
- Memory Statistics: Get statistics about the memory usage.
š MCP Tools Execution Flow
graph TD
A[š¤ User Submits KQL Query] --> B{š Query Validation}
B -->|ā Invalid| C[š Syntax Error Response]
B -->|ā
Valid| D[š§ Load Schema Context]
D --> E{š¾ Schema Cache Available?}
E -->|ā
Yes| F[ā” Load from Memory]
E -->|ā No| G[š Discover Schema]
F --> H[šÆ Execute Query]
G --> I[š¾ Cache Schema + AI Context]
I --> H
H --> J{šÆ Query Success?}
J -->|ā Error| K[šØ Enhanced Error Message]
J -->|ā
Success| L[š Process Results]
L --> M[šØ Generate Visualization]
M --> N[š¤ Return Results + Context]
K --> O[š” AI Suggestions]
O --> N
style A fill:#4a90e2,stroke:#2c5282,stroke-width:2px,color:#ffffff
style B fill:#7c7c7c,stroke:#4a4a4a,stroke-width:2px,color:#ffffff
style C fill:#e74c3c,stroke:#c0392b,stroke-width:2px,color:#ffffff
style D fill:#8e44ad,stroke:#6a1b99,stroke-width:2px,color:#ffffff
style E fill:#7c7c7c,stroke:#4a4a4a,stroke-width:2px,color:#ffffff
style F fill:#27ae60,stroke:#1e8449,stroke-width:2px,color:#ffffff
style G fill:#f39c12,stroke:#d68910,stroke-width:2px,color:#ffffff
style H fill:#2980b9,stroke:#1f618d,stroke-width:2px,color:#ffffff
style I fill:#f39c12,stroke:#d68910,stroke-width:2px,color:#ffffff
style J fill:#7c7c7c,stroke:#4a4a4a,stroke-width:2px,color:#ffffff
style K fill:#e74c3c,stroke:#c0392b,stroke-width:2px,color:#ffffff
style L fill:#27ae60,stroke:#1e8449,stroke-width:2px,color:#ffffff
style M fill:#8e44ad,stroke:#6a1b99,stroke-width:2px,color:#ffffff
style N fill:#27ae60,stroke:#1e8449,stroke-width:2px,color:#ffffff
style O fill:#f39c12,stroke:#d68910,stroke-width:2px,color:#ffffff
Schema Memory Discovery Flow
The kql_schema_memory functionality is now seamlessly integrated into the kql_execute tool. When you run a query, the server automatically discovers and caches the schema for any tables it hasn't seen before. This on-demand process ensures you always have the context you need without any manual steps.
graph TD
A[š¤ User Requests Schema Discovery] --> B[š Connect to Cluster]
B --> C[š Enumerate Databases]
C --> D[š Discover Tables]
D --> E[š Get Table Schemas]
E --> F[š¤ AI Analysis]
F --> G[š Generate Descriptions]
G --> H[š¾ Store in Memory]
H --> I[š Update Statistics]
I --> J[ā
Return Summary]
style A fill:#4a90e2,stroke:#2c5282,stroke-width:2px,color:#ffffff
style B fill:#8e44ad,stroke:#6a1b99,stroke-width:2px,color:#ffffff
style C fill:#f39c12,stroke:#d68910,stroke-width:2px,color:#ffffff
style D fill:#2980b9,stroke:#1f618d,stroke-width:2px,color:#ffffff
style E fill:#7c7c7c,stroke:#4a4a4a,stroke-width:2px,color:#ffffff
style F fill:#e67e22,stroke:#bf6516,stroke-width:2px,color:#ffffff
style G fill:#8e44ad,stroke:#6a1b99,stroke-width:2px,color:#ffffff
style H fill:#f39c12,stroke:#d68910,stroke-width:2px,color:#ffffff
style I fill:#2980b9,stroke:#1f618d,stroke-width:2px,color:#ffffff
style J fill:#27ae60,stroke:#1e8449,stroke-width:2px,color:#ffffff
š Prerequisites
- Python 3.10 or higher
- Azure CLI installed and authenticated (
az login) - Access to Azure Data Explorer cluster(s)
š One-Command Installation
Quick Install (Recommended)
From Source
git clone https://github.com/4R9UN/mcp-kql-server.git && cd mcp-kql-server && pip install -e .
Alternative Installation Methods
pip install mcp-kql-server
That's it! The server automatically:
- ā
Sets up memory directories in
%APPDATA%\KQL_MCP(Windows) or~/.local/share/KQL_MCP(Linux/Mac) - ā Configures optimal defaults for production use
- ā Suppresses verbose Azure SDK logs
- ā No environment variables required
š± MCP Client Configuration
Claude Desktop
Add to your Claude Desktop MCP settings file (mcp_settings.json):
Location:
- Windows:
%APPDATA%\Claude\mcp_settings.json - macOS:
~/Library/Application Support/Claude/mcp_settings.json - Linux:
~/.config/Claude/mcp_settings.json
{
"mcpServers": {
"mcp-kql-server": {
"command": "python",
"args": ["-m", "mcp_kql_server"],
"env": {}
}
}
}
VSCode (with MCP Extension)
Add to your VSCode MCP configuration:
Settings.json location:
- Windows:
%APPDATA%\Code\User\mcp.json - macOS:
~/Library/Application Support/Code/User/mcp.json - Linux:
~/.config/Code/User/mcp.json
{
"MCP-kql-server": {
"command": "python",
"args": [
"-m",
"mcp_kql_server"
],
"type": "stdio"
},
}
Roo-code Or Cline (VS-code Extentions)
Ask or Add to your Roo-code Or Cline MCP settings:
MCP Settings location:
- All platforms: Through Roo-code extension settings or
mcp_settings.json
{
"MCP-kql-server": {
"command": "python",
"args": [
"-m",
"mcp_kql_server"
],
"type": "stdio",
"alwaysAllow": [
]
},
}
Generic MCP Client
For any MCP-compatible application:
# Command to run the server
python -m mcp_kql_server
# Server provides these tools:
# - kql_execute: Execute KQL queries with AI context
# - kql_schema_memory: Discover and cache cluster schemas
š§ Quick Start
1. Authenticate with Azure (One-time setup)
az login
2. Start the MCP Server (Zero configuration)
python -m mcp_kql_server
The server starts immediately with:
- š Auto-created memory path:
%APPDATA%\KQL_MCP\cluster_memory - š§ Optimized defaults: No configuration files needed
- š Secure setup: Uses your existing Azure CLI credentials
3. Use via MCP Client
The server provides two main tools:
kql_execute- Execute KQL Queries with AI Context
kql_schema_memory- Discover and Cache Cluster Schemas
š” Usage Examples
Basic Query Execution
Ask your MCP client (like Claude):
"Execute this KQL query against the help cluster:
cluster('help.kusto.windows.net').database('Samples').StormEvents | take 10and summarize the result and give me high level insights "
Complex Analytics Query
Ask your MCP client:
"Query the Samples database in the help cluster to show me the top 10 states by storm event count, include visualization"
Schema Discovery
Ask your MCP client:
"Discover and cache the schema for the help.kusto.windows.net cluster, then tell me what databases and tables are available"
Data Exploration with Context
Ask your MCP client:
"Using the StormEvents table in the Samples database on help cluster, show me all tornado events from 2007 with damage estimates over $1M"
Time-based Analysis
Ask your MCP client:
"Analyze storm events by month for the year 2007 in the StormEvents table, group by event type and show as a visualization"
šÆ Key Benefits
For Data Analysts
- ā” Faster Query Development: AI-powered autocomplete and suggestions
- šØ Rich Visualizations: Instant markdown tables for data exploration
- š§ Context Awareness: Understand your data structure without documentation
For DevOps Teams
- š Automated Schema Discovery: Keep schema information up-to-date
- š¾ Smart Caching: Reduce API calls and improve performance
- š Secure Authentication: Leverage existing Azure CLI credentials
For AI Applications
- š¤ Intelligent Query Assistance: AI-generated table descriptions and suggestions
- š Structured Data Access: Clean, typed responses for downstream processing
- šÆ Context-Aware Responses: Rich metadata for better AI decision making
šļø Architecture
graph TD
A[MCP Client<br/>Claude/AI/Custom] <--> B[MCP KQL Server<br/>FastMCP Framework]
B <--> C[Azure Data Explorer<br/>Kusto Clusters]
B <--> D[Schema Memory<br/>Local AI Cache]
style A fill:#4a90e2,stroke:#2c5282,stroke-width:3px,color:#ffffff
style B fill:#8e44ad,stroke:#6a1b99,stroke-width:3px,color:#ffffff
style C fill:#e67e22,stroke:#bf6516,stroke-width:3px,color:#ffffff
style D fill:#27ae60,stroke:#1e8449,stroke-width:3px,color:#ffffff
š Project Structure
mcp-kql-server/
āāā mcp_kql_server/
ā āāā __init__.py # Package initialization
ā āāā mcp_server.py # Main MCP server implementation
ā āāā execute_kql.py # KQL query execution logic
ā āāā memory.py # Advanced memory management
ā āāā kql_auth.py # Azure authentication
ā āāā utils.py # Utility functions
ā āāā constants.py # Configuration constants
āāā docs/ # Documentation
āāā Example/ # Usage examples
āāā pyproject.toml # Project configuration
āāā README.md # This file
š Security
- Azure CLI Authentication: Leverages your existing Azure device login
- No Credential Storage: Server doesn't store authentication tokens
- Local Memory: Schema cache stored locally, not transmitted
š Troubleshooting
Common Issues
-
Authentication Errors
# Re-authenticate with Azure CLI az login --tenant your-tenant-id -
Memory Issues
# The memory cache is now managed automatically. If you suspect issues, # you can clear the cache directory, and it will be rebuilt on the next query. # Windows: rmdir /s /q "%APPDATA%\KQL_MCP\unified_memory.json" # macOS/Linux: rm -rf ~/.local/share/KQL_MCP/cluster_memory -
Connection Timeouts
- Check cluster URI format
- Verify network connectivity
- Confirm Azure permissions
š¤ Contributing
We welcome contributions! Please do.
š Support
- Issues: GitHub Issues
- PyPI Package: PyPI Project Page
- Author: Arjun Trivedi
- Certified : MCPHub
š Star History
Happy Querying! š
Related Servers
TON BLOCKCHAIN MCP
Interact with the TON blockchain using natural language.
CData SAP Ariba Procurement Server
A read-only MCP server for querying live SAP Ariba Procurement data. Requires the CData JDBC Driver for SAP Ariba Procurement.
Alpha Vantage
Provides real-time financial market data using the Alpha Vantage API.
MCP Database Server
Provides database access, supporting SQLite, SQL Server, PostgreSQL, and MySQL.
MCP Neo4j Server
Integrate the Neo4j graph database with clients through natural language interactions.
World Bank MCP Server
Interact with the open World Bank data API to list and analyze economic and development indicators for various countries.
Polygon MCP Server
Provides on-chain tools to interact with the Polygon PoS blockchain.
Octopus MCP Server
A high-performance, persistent knowledge base MCP server built with Rust. Supports local deployment with hybrid datastores like Qdrant, Neo4j, and Redis.
FoodData Central
Access the USDA's FoodData Central database for comprehensive food and nutrient information.
CData Tableau CRM Analytics Server
A read-only MCP server for querying live Tableau CRM Analytics data using the CData JDBC Driver.

