MCP KQL Server

Execute KQL queries using Azure authentication. Requires Azure CLI login.

MCP KQL Server

MseeP.ai Security Assessment Badge

AI-Powered KQL Query Execution with Intelligent Schema Memory

A Model Context Protocol (MCP) server that provides intelligent KQL (Kusto Query Language) query execution with AI-powered schema caching and context assistance for Azure Data Explorer clusters.

Verified on MseeP PyPI version Python

CI/CD Pipeline codecov Security Rating Code Quality

FastMCP Azure Data Explorer MCP Protocol Maintenance MCP Badge

🎬 Demo

Watch a quick demo of the MCP KQL Server in action:

MCP KQL Server Demo

πŸš€ Features

  • execute_kql_query:

    • Natural Language to KQL: Generate KQL queries from natural language descriptions.
    • Direct KQL Execution: Execute raw KQL queries.
    • Multiple Output Formats: Supports JSON, CSV, and table formats.
    • Live Schema Validation: Ensures query accuracy by using live schema discovery.
  • schema_memory:

    • Schema Discovery: Discover and cache schemas for tables.
    • Database Exploration: List all tables within a database.
    • AI Context: Get AI-driven context for tables.
    • Analysis Reports: Generate reports with visualizations.
    • Cache Management: Clear or refresh the schema cache.
    • Memory Statistics: Get statistics about the memory usage.

πŸ“Š MCP Tools Execution Flow

graph TD
    A[πŸ‘€ User Submits KQL Query] --> B{πŸ” Query Validation}
    B -->|❌ Invalid| C[πŸ“ Syntax Error Response]
    B -->|βœ… Valid| D[🧠 Load Schema Context]
    
    D --> E{πŸ’Ύ Schema Cache Available?}
    E -->|βœ… Yes| F[⚑ Load from Memory]
    E -->|❌ No| G[πŸ” Discover Schema]
    
    F --> H[🎯 Execute Query]
    G --> I[πŸ’Ύ Cache Schema + AI Context]
    I --> H
    
    H --> J{🎯 Query Success?}
    J -->|❌ Error| K[🚨 Enhanced Error Message]
    J -->|βœ… Success| L[πŸ“Š Process Results]
    
    L --> M[🎨 Generate Visualization]
    M --> N[πŸ“€ Return Results + Context]
    
    K --> O[πŸ’‘ AI Suggestions]
    O --> N
    
    style A fill:#4a90e2,stroke:#2c5282,stroke-width:2px,color:#ffffff
    style B fill:#7c7c7c,stroke:#4a4a4a,stroke-width:2px,color:#ffffff
    style C fill:#e74c3c,stroke:#c0392b,stroke-width:2px,color:#ffffff
    style D fill:#8e44ad,stroke:#6a1b99,stroke-width:2px,color:#ffffff
    style E fill:#7c7c7c,stroke:#4a4a4a,stroke-width:2px,color:#ffffff
    style F fill:#27ae60,stroke:#1e8449,stroke-width:2px,color:#ffffff
    style G fill:#f39c12,stroke:#d68910,stroke-width:2px,color:#ffffff
    style H fill:#2980b9,stroke:#1f618d,stroke-width:2px,color:#ffffff
    style I fill:#f39c12,stroke:#d68910,stroke-width:2px,color:#ffffff
    style J fill:#7c7c7c,stroke:#4a4a4a,stroke-width:2px,color:#ffffff
    style K fill:#e74c3c,stroke:#c0392b,stroke-width:2px,color:#ffffff
    style L fill:#27ae60,stroke:#1e8449,stroke-width:2px,color:#ffffff
    style M fill:#8e44ad,stroke:#6a1b99,stroke-width:2px,color:#ffffff
    style N fill:#27ae60,stroke:#1e8449,stroke-width:2px,color:#ffffff
    style O fill:#f39c12,stroke:#d68910,stroke-width:2px,color:#ffffff

Schema Memory Discovery Flow

The kql_schema_memory functionality is now seamlessly integrated into the kql_execute tool. When you run a query, the server automatically discovers and caches the schema for any tables it hasn't seen before. This on-demand process ensures you always have the context you need without any manual steps.

graph TD
    A[πŸ‘€ User Requests Schema Discovery] --> B[πŸ”— Connect to Cluster]
    B --> C[πŸ“‚ Enumerate Databases]
    C --> D[πŸ“‹ Discover Tables]
    
    D --> E[πŸ” Get Table Schemas]
    E --> F[πŸ€– AI Analysis]
    F --> G[πŸ“ Generate Descriptions]
    
    G --> H[πŸ’Ύ Store in Memory]
    H --> I[πŸ“Š Update Statistics]
    I --> J[βœ… Return Summary]
    
    style A fill:#4a90e2,stroke:#2c5282,stroke-width:2px,color:#ffffff
    style B fill:#8e44ad,stroke:#6a1b99,stroke-width:2px,color:#ffffff
    style C fill:#f39c12,stroke:#d68910,stroke-width:2px,color:#ffffff
    style D fill:#2980b9,stroke:#1f618d,stroke-width:2px,color:#ffffff
    style E fill:#7c7c7c,stroke:#4a4a4a,stroke-width:2px,color:#ffffff
    style F fill:#e67e22,stroke:#bf6516,stroke-width:2px,color:#ffffff
    style G fill:#8e44ad,stroke:#6a1b99,stroke-width:2px,color:#ffffff
    style H fill:#f39c12,stroke:#d68910,stroke-width:2px,color:#ffffff
    style I fill:#2980b9,stroke:#1f618d,stroke-width:2px,color:#ffffff
    style J fill:#27ae60,stroke:#1e8449,stroke-width:2px,color:#ffffff

πŸ“‹ Prerequisites

  • Python 3.10 or higher
  • Azure CLI installed and authenticated (az login)
  • Access to Azure Data Explorer cluster(s)

πŸš€ One-Command Installation

Quick Install (Recommended)

From Source

git clone https://github.com/4R9UN/mcp-kql-server.git && cd mcp-kql-server && pip install -e .

Alternative Installation Methods

pip install mcp-kql-server

That's it! The server automatically:

  • βœ… Sets up memory directories in %APPDATA%\KQL_MCP (Windows) or ~/.local/share/KQL_MCP (Linux/Mac)
  • βœ… Configures optimal defaults for production use
  • βœ… Suppresses verbose Azure SDK logs
  • βœ… No environment variables required

πŸ“± MCP Client Configuration

Claude Desktop

Add to your Claude Desktop MCP settings file (mcp_settings.json):

Location:

  • Windows: %APPDATA%\Claude\mcp_settings.json
  • macOS: ~/Library/Application Support/Claude/mcp_settings.json
  • Linux: ~/.config/Claude/mcp_settings.json
{
  "mcpServers": {
    "mcp-kql-server": {
      "command": "python",
      "args": ["-m", "mcp_kql_server"],
      "env": {}
    }
  }
}

VSCode (with MCP Extension)

Add to your VSCode MCP configuration:

Settings.json location:

  • Windows: %APPDATA%\Code\User\mcp.json
  • macOS: ~/Library/Application Support/Code/User/mcp.json
  • Linux: ~/.config/Code/User/mcp.json
{
 "MCP-kql-server": {
			"command": "python",
			"args": [
				"-m",
				"mcp_kql_server"
			],
			"type": "stdio"
		},
}

Roo-code Or Cline (VS-code Extentions)

Ask or Add to your Roo-code Or Cline MCP settings:

MCP Settings location:

  • All platforms: Through Roo-code extension settings or mcp_settings.json
{
   "MCP-kql-server": {
      "command": "python",
      "args": [
        "-m",
        "mcp_kql_server"
      ],
      "type": "stdio",
      "alwaysAllow": [
      ]
    },
}

Generic MCP Client

For any MCP-compatible application:

# Command to run the server
python -m mcp_kql_server

# Server provides these tools:
# - kql_execute: Execute KQL queries with AI context
# - kql_schema_memory: Discover and cache cluster schemas

πŸ”§ Quick Start

1. Authenticate with Azure (One-time setup)

az login

2. Start the MCP Server (Zero configuration)

python -m mcp_kql_server

The server starts immediately with:

  • πŸ“ Auto-created memory path: %APPDATA%\KQL_MCP\cluster_memory
  • πŸ”§ Optimized defaults: No configuration files needed
  • πŸ” Secure setup: Uses your existing Azure CLI credentials

3. Use via MCP Client

The server provides two main tools:

kql_execute - Execute KQL Queries with AI Context

kql_schema_memory - Discover and Cache Cluster Schemas

πŸ’‘ Usage Examples

Basic Query Execution

Ask your MCP client (like Claude):

"Execute this KQL query against the help cluster: cluster('help.kusto.windows.net').database('Samples').StormEvents | take 10 and summarize the result and give me high level insights "

Complex Analytics Query

Ask your MCP client:

"Query the Samples database in the help cluster to show me the top 10 states by storm event count, include visualization"

Schema Discovery

Ask your MCP client:

"Discover and cache the schema for the help.kusto.windows.net cluster, then tell me what databases and tables are available"

Data Exploration with Context

Ask your MCP client:

"Using the StormEvents table in the Samples database on help cluster, show me all tornado events from 2007 with damage estimates over $1M"

Time-based Analysis

Ask your MCP client:

"Analyze storm events by month for the year 2007 in the StormEvents table, group by event type and show as a visualization"

🎯 Key Benefits

For Data Analysts

  • ⚑ Faster Query Development: AI-powered autocomplete and suggestions
  • 🎨 Rich Visualizations: Instant markdown tables for data exploration
  • 🧠 Context Awareness: Understand your data structure without documentation

For DevOps Teams

  • πŸ”„ Automated Schema Discovery: Keep schema information up-to-date
  • πŸ’Ύ Smart Caching: Reduce API calls and improve performance
  • πŸ” Secure Authentication: Leverage existing Azure CLI credentials

For AI Applications

  • πŸ€– Intelligent Query Assistance: AI-generated table descriptions and suggestions
  • πŸ“Š Structured Data Access: Clean, typed responses for downstream processing
  • 🎯 Context-Aware Responses: Rich metadata for better AI decision making

πŸ—οΈ Architecture

graph TD
    A[MCP Client<br/>Claude/AI/Custom] <--> B[MCP KQL Server<br/>FastMCP Framework]
    B <--> C[Azure Data Explorer<br/>Kusto Clusters]
    B <--> D[Schema Memory<br/>Local AI Cache]
    
    style A fill:#4a90e2,stroke:#2c5282,stroke-width:3px,color:#ffffff
    style B fill:#8e44ad,stroke:#6a1b99,stroke-width:3px,color:#ffffff
    style C fill:#e67e22,stroke:#bf6516,stroke-width:3px,color:#ffffff
    style D fill:#27ae60,stroke:#1e8449,stroke-width:3px,color:#ffffff

πŸ“ Project Structure

mcp-kql-server/
β”œβ”€β”€ mcp_kql_server/
β”‚   β”œβ”€β”€ __init__.py          # Package initialization
β”‚   β”œβ”€β”€ mcp_server.py        # Main MCP server implementation
β”‚   β”œβ”€β”€ execute_kql.py       # KQL query execution logic
β”‚   β”œβ”€β”€ memory.py            # Advanced memory management
β”‚   β”œβ”€β”€ kql_auth.py          # Azure authentication
β”‚   β”œβ”€β”€ utils.py             # Utility functions
β”‚   └── constants.py         # Configuration constants
β”œβ”€β”€ docs/                    # Documentation
β”œβ”€β”€ Example/                 # Usage examples
β”œβ”€β”€ pyproject.toml          # Project configuration
└── README.md               # This file

πŸ”’ Security

  • Azure CLI Authentication: Leverages your existing Azure device login
  • No Credential Storage: Server doesn't store authentication tokens
  • Local Memory: Schema cache stored locally, not transmitted

πŸ› Troubleshooting

Common Issues

  1. Authentication Errors

    # Re-authenticate with Azure CLI
    az login --tenant your-tenant-id
    
  2. Memory Issues

    # The memory cache is now managed automatically. If you suspect issues,
    # you can clear the cache directory, and it will be rebuilt on the next query.
    # Windows:
    rmdir /s /q "%APPDATA%\KQL_MCP\unified_memory.json"
    
    # macOS/Linux:
    rm -rf ~/.local/share/KQL_MCP/cluster_memory
    
  3. Connection Timeouts

    • Check cluster URI format
    • Verify network connectivity
    • Confirm Azure permissions

🀝 Contributing

We welcome contributions! Please do.

πŸ“ž Support

🌟 Star History

Star History Chart


Happy Querying! πŸŽ‰

Related Servers