MCP KQL Server

Execute KQL queries using Azure authentication. Requires Azure CLI login.

MCP KQL Server

AI-Powered KQL Query Execution with Intelligent Schema Memory

A Model Context Protocol (MCP) server that provides intelligent KQL (Kusto Query Language) query execution with AI-powered schema caching and context assistance for Azure Data Explorer clusters.

PyPI version Python

CI/CD Pipeline codecov Security Rating Code Quality

FastMCP Azure Data Explorer MCP Protocol Maintenance

šŸš€ Features

  • šŸŽÆ Intelligent KQL Execution: Execute KQL queries against any Azure Data Explorer cluster
  • 🧠 AI Schema Memory: Automatic schema discovery and intelligent caching
  • šŸ“Š Rich Visualizations: Markdown table output with configurable formatting
  • ⚔ Performance Optimized: Smart caching reduces cluster API calls
  • šŸ” Azure Authentication: Seamless Azure CLI integration
  • šŸŽØ Context-Aware: AI-powered query assistance and error suggestions

šŸ“Š MCP Tools Execution Flow

KQL Query Execution Flow

graph TD
    A[šŸ‘¤ User Submits KQL Query] --> B{šŸ” Query Validation}
    B -->|āŒ Invalid| C[šŸ“ Syntax Error Response]
    B -->|āœ… Valid| D[🧠 Load Schema Context]
    
    D --> E{šŸ’¾ Schema Cache Available?}
    E -->|āœ… Yes| F[⚔ Load from Memory]
    E -->|āŒ No| G[šŸ” Discover Schema]
    
    F --> H[šŸŽÆ Execute Query]
    G --> I[šŸ’¾ Cache Schema + AI Context]
    I --> H
    
    H --> J{šŸŽÆ Query Success?}
    J -->|āŒ Error| K[🚨 Enhanced Error Message]
    J -->|āœ… Success| L[šŸ“Š Process Results]
    
    L --> M[šŸŽØ Generate Visualization]
    M --> N[šŸ“¤ Return Results + Context]
    
    K --> O[šŸ’” AI Suggestions]
    O --> N
    
    style A fill:#e1f5fe
    style N fill:#e8f5e8
    style K fill:#ffebee

Schema Memory Discovery Flow

graph TD
    A[šŸ‘¤ User Requests Schema Discovery] --> B[šŸ”— Connect to Cluster]
    B --> C[šŸ“‚ Enumerate Databases]
    C --> D[šŸ“‹ Discover Tables]
    
    D --> E[šŸ” Get Table Schemas]
    E --> F[šŸ¤– AI Analysis]
    F --> G[šŸ“ Generate Descriptions]
    
    G --> H[šŸ’¾ Store in Memory]
    H --> I[šŸ“Š Update Statistics]
    I --> J[āœ… Return Summary]
    
    style A fill:#e1f5fe
    style J fill:#e8f5e8

šŸ“‹ Prerequisites

  • Python 3.10 or higher
  • Azure CLI installed and authenticated (az login)
  • Access to Azure Data Explorer cluster(s)

šŸš€ One-Command Installation

Quick Install (Recommended)

From Source

git clone https://github.com/4R9UN/mcp-kql-server.git && cd mcp-kql-server && pip install -e .

Alternative Installation Methods

pip install mcp-kql-server

That's it! The server automatically:

  • āœ… Sets up memory directories in %APPDATA%\KQL_MCP (Windows) or ~/.local/share/KQL_MCP (Linux/Mac)
  • āœ… Configures optimal defaults for production use
  • āœ… Suppresses verbose Azure SDK logs
  • āœ… No environment variables required

šŸ“± MCP Client Configuration

Claude Desktop

Add to your Claude Desktop MCP settings file (mcp_settings.json):

Location:

  • Windows: %APPDATA%\Claude\mcp_settings.json
  • macOS: ~/Library/Application Support/Claude/mcp_settings.json
  • Linux: ~/.config/Claude/mcp_settings.json
{
  "mcpServers": {
    "mcp-kql-server": {
      "command": "python",
      "args": ["-m", "mcp_kql_server"],
      "env": {}
    }
  }
}

VSCode (with MCP Extension)

Add to your VSCode MCP configuration:

Settings.json location:

  • Windows: %APPDATA%\Code\User\settings.json
  • macOS: ~/Library/Application Support/Code/User/settings.json
  • Linux: ~/.config/Code/User/settings.json
{
  "mcp.servers": {
    "mcp-kql-server": {
      "command": "python",
      "args": ["-m", "mcp_kql_server"],
      "cwd": null,
      "env": {}
    }
  }
}

Roo-code (Cline Extension)

Add to your Roo-code MCP settings:

MCP Settings location:

  • All platforms: Through Roo-code extension settings or mcp_settings.json
{
  "mcpServers": {
    "kql-server": {
      "command": "python",
      "args": ["-m", "mcp_kql_server"],
      "env": {},
      "description": "KQL Server for Azure Data Explorer queries with AI assistance"
    }
  }
}

Generic MCP Client

For any MCP-compatible application:

# Command to run the server
python -m mcp_kql_server

# Server provides these tools:
# - kql_execute: Execute KQL queries with AI context
# - kql_schema_memory: Discover and cache cluster schemas

Configuration with Environment Variables

You can customize the server behavior with environment variables:

{
  "mcpServers": {
    "mcp-kql-server": {
      "command": "python",
      "args": ["-m", "mcp_kql_server"],
      "env": {
        
      }
    }
  }
}

šŸ”§ Quick Start

1. Authenticate with Azure (One-time setup)

az login

2. Start the MCP Server (Zero configuration)

python -m mcp_kql_server

The server starts immediately with:

  • šŸ“ Auto-created memory path: %APPDATA%\KQL_MCP\cluster_memory
  • šŸ”§ Optimized defaults: No configuration files needed
  • šŸ” Secure setup: Uses your existing Azure CLI credentials

3. Use via MCP Client

The server provides two main tools:

kql_execute - Execute KQL Queries with AI Context

kql_schema_memory - Discover and Cache Cluster Schemas

šŸ’” Usage Examples

Basic Query Execution

Ask your MCP client (like Claude):

"Execute this KQL query against the help cluster: cluster('help.kusto.windows.net').database('Samples').StormEvents | take 10 and summarize the result and give me high level insights "

Complex Analytics Query

Ask your MCP client:

"Query the Samples database in the help cluster to show me the top 10 states by storm event count, include visualization"

Schema Discovery

Ask your MCP client:

"Discover and cache the schema for the help.kusto.windows.net cluster, then tell me what databases and tables are available"

Data Exploration with Context

Ask your MCP client:

"Using the StormEvents table in the Samples database on help cluster, show me all tornado events from 2007 with damage estimates over $1M"

Time-based Analysis

Ask your MCP client:

"Analyze storm events by month for the year 2007 in the StormEvents table, group by event type and show as a visualization"

šŸŽÆ Key Benefits

For Data Analysts

  • ⚔ Faster Query Development: AI-powered autocomplete and suggestions
  • šŸŽØ Rich Visualizations: Instant markdown tables for data exploration
  • 🧠 Context Awareness: Understand your data structure without documentation

For DevOps Teams

  • šŸ”„ Automated Schema Discovery: Keep schema information up-to-date
  • šŸ’¾ Smart Caching: Reduce API calls and improve performance
  • šŸ” Secure Authentication: Leverage existing Azure CLI credentials

For AI Applications

  • šŸ¤– Intelligent Query Assistance: AI-generated table descriptions and suggestions
  • šŸ“Š Structured Data Access: Clean, typed responses for downstream processing
  • šŸŽÆ Context-Aware Responses: Rich metadata for better AI decision making

šŸ—ļø Architecture

graph TD
    A[MCP Client<br/>Claude/AI/Custom] <--> B[MCP KQL Server<br/>FastMCP Framework]
    B <--> C[Azure Data Explorer<br/>Kusto Clusters]
    B <--> D[Schema Memory<br/>Local AI Cache]
    
    style A fill:#e1f5fe
    style B fill:#f3e5f5
    style C fill:#fff3e0
    style D fill:#e8f5e8

šŸ“ Project Structure

mcp-kql-server/
ā”œā”€ā”€ mcp_kql_server/
│   ā”œā”€ā”€ __init__.py          # Package initialization
│   ā”œā”€ā”€ mcp_server.py        # Main MCP server implementation
│   ā”œā”€ā”€ execute_kql.py       # KQL query execution logic
│   ā”œā”€ā”€ schema_memory.py     # Schema caching and discovery
│   ā”œā”€ā”€ unified_memory.py    # Advanced memory management
│   ā”œā”€ā”€ kql_auth.py          # Azure authentication
│   ā”œā”€ā”€ utils.py             # Utility functions
│   └── constants.py         # Configuration constants
ā”œā”€ā”€ docs/                    # Documentation
ā”œā”€ā”€ Example/                 # Usage examples
ā”œā”€ā”€ pyproject.toml          # Project configuration
└── README.md               # This file

šŸš€ Advanced Usage

Custom Memory Path

{
    "tool": "kql_execute",
    "input": {
        "query": "...",
        "cluster_memory_path": "/custom/memory/path"
    }
}

Force Schema Refresh

{
    "tool": "kql_schema_memory",
    "input": {
        "cluster_uri": "mycluster",
        "force_refresh": true
    }
}

Performance Optimization

{
    "tool": "kql_execute",
    "input": {
        "query": "...",
        "use_schema_context": false,  # Disable for faster execution
        "visualize": false           # Disable for minimal response
    }
}

šŸ”’ Security

  • Azure CLI Authentication: Leverages your existing Azure device login
  • No Credential Storage: Server doesn't store authentication tokens
  • Local Memory: Schema cache stored locally, not transmitted

šŸ› Troubleshooting

Common Issues

  1. Authentication Errors

    # Re-authenticate with Azure CLI
    az login --tenant your-tenant-id
    
  2. Memory Issues

    # Clear schema cache if corrupted (automatic backup created)
    # Windows:
    del "%APPDATA%\KQL_MCP\schema_memory.json"
    
    # macOS/Linux:
    rm ~/.local/share/KQL_MCP/schema_memory.json
    
  3. Connection Timeouts

    • Check cluster URI format
    • Verify network connectivity
    • Confirm Azure permissions
  4. Memory Path Issues

    • Server automatically creates fallback directory in ~/.kql_mcp_memory if default path fails
    • Check logs for memory path initialization messages

Debug Mode (Optional)

# Enable debug logging if needed
set KQL_DEBUG=true  # Windows
export KQL_DEBUG=true  # macOS/Linux

python -m mcp_kql_server

šŸ¤ Contributing

We welcome contributions! Please do.

šŸ™ Acknowledgments

šŸ“ž Support

🌟 Star History

Star History Chart


Happy Querying! šŸŽ‰

Related Servers