Code Analysis MCP Server
A modular MCP server for code analysis, supporting file operations, code search, and structure analysis.
Code Analysis MCP Server
A modular MCP (Model Context Protocol) server for code analysis with file operations, code search, and structure analysis capabilities.
Features
š File Operations
- read_file: Read contents of any code file
- list_files: List files in directories with pattern matching
- file_info: Get detailed file information (size, type, line count)
š Code Search
- search_code: Search for patterns in code using regex
- find_definition: Find symbol definitions (functions, classes, variables)
š Code Analysis
- analyze_structure: Analyze code structure (imports, classes, functions)
Installation
# Clone the repository
git clone https://github.com/yourusername/code-mcp.git
cd code-mcp
# Create virtual environment
python -m venv venv
# Activate environment
source venv/bin/activate # On Unix/macOS
venv\Scripts\activate # On Windows
# Install dependencies
pip install -r requirements.txt
Usage
1. With Claude Desktop
Add to your Claude Desktop configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"code-analyzer": {
"command": "python",
"args": ["/absolute/path/to/code-mcp/server.py"]
}
}
}
Then restart Claude Desktop.
2. With Continue.dev (VS Code)
Add to your Continue configuration:
{
"models": [...],
"mcpServers": {
"code-analyzer": {
"command": "python",
"args": ["/absolute/path/to/code-mcp/server.py"]
}
}
}
3. With Other MCP Clients
Any MCP-compatible client can use this server by pointing to the server.py file.
Available Tools
š read_file
Read the contents of a file.
{
"tool": "read_file",
"arguments": {
"path": "src/main.py",
"encoding": "utf-8" // optional, default: utf-8
}
}
š list_files
List files in a directory with optional pattern matching.
{
"tool": "list_files",
"arguments": {
"directory": "./src", // optional, default: current dir
"pattern": "*.py", // optional, default: *
"recursive": true // optional, default: false
}
}
ā¹ļø file_info
Get detailed information about a file.
{
"tool": "file_info",
"arguments": {
"path": "src/main.py"
}
}
š search_code
Search for patterns in code files using regex.
{
"tool": "search_code",
"arguments": {
"pattern": "def.*test", // regex pattern
"directory": "./src", // optional
"file_pattern": "*.py", // optional
"case_sensitive": false // optional, default: true
}
}
šÆ find_definition
Find where a symbol is defined.
{
"tool": "find_definition",
"arguments": {
"symbol": "MyClass",
"directory": "./src", // optional
"language": "python" // optional: python, javascript
}
}
šļø analyze_structure
Analyze the structure of a code file.
{
"tool": "analyze_structure",
"arguments": {
"path": "src/main.py",
"include_docstrings": true // optional, default: false
}
}
š¤ update_with_architecture
Compare old and new architecture versions and intelligently update the new file.
{
"tool": "update_with_architecture",
"arguments": {
"old_file": "src/legacy/module.py", // Reference file (old architecture)
"new_file": "src/modern/module.py", // Target file (will be updated)
"backup": true // optional, default: true
}
}
AI Configuration
To use the AI-powered tools, you need to configure your API keys:
-
Copy
.env.exampleto.env:cp .env.example .env -
Edit
.envand add your API keys:AI_PROVIDER=openai OPENAI_API_KEY=your-openai-api-key # or AI_PROVIDER=anthropic ANTHROPIC_API_KEY=your-anthropic-api-key
Thinking Models Support
The tool automatically handles "thinking" models (like o1, o1-preview) that include reasoning in their responses:
- Thinking sections are automatically removed
- Only the actual code is extracted
- Supports various thinking formats:
<think>,[thinking], etc.
-
Install AI dependencies:
pip install openai anthropic -
Test LLM connectivity:
./test_llm.sh # or python tests/test_llm.py
Examples
In Claude Desktop
After configuring, you can ask Claude:
- "Read the file src/main.py"
- "Search for all functions that contain 'test' in the src directory"
- "Find where the class 'UserModel' is defined"
- "Analyze the structure of app.py"
- "List all Python files in the project"
Programmatic Usage
# Example of calling tools programmatically
import asyncio
from mcp import Client
async def main():
client = Client()
# Read a file
result = await client.call_tool("read_file", {
"path": "src/main.py"
})
# Search for patterns
result = await client.call_tool("search_code", {
"pattern": "TODO|FIXME",
"directory": "./",
"recursive": True
})
# Analyze structure
result = await client.call_tool("analyze_structure", {
"path": "src/main.py",
"include_docstrings": True
})
asyncio.run(main())
Architecture
The server follows a modular architecture:
āāā server.py # Main MCP server
āāā tools/ # Tool definitions
ā āāā file_tools.py # File operations
ā āāā code_tools.py # Code analysis tools
āāā handlers/ # Request handlers
ā āāā file_handler.py
ā āāā search_handler.py
ā āāā analyze_handler.py
āāā core/ # Core services
āāā file_system.py # File system operations
āāā code_parser.py # Code parsing logic
Supported Languages
- Python (.py)
- JavaScript/TypeScript (.js, .ts, .jsx, .tsx)
- Java (.java)
- C/C++ (.c, .cpp, .h)
- Go (.go)
- Rust (.rs)
- Ruby (.rb)
- And more...
Security
- File access is restricted to prevent directory traversal
- Large files are handled efficiently with streaming
- Search results are limited to prevent memory issues
Contributing
Feel free to submit issues and enhancement requests!
License
MIT
Related Servers
Scout Monitoring MCP
sponsorPut performance and error data directly in the hands of your AI assistant.
Alpha Vantage MCP Server
sponsorAccess financial market data: realtime & historical stock, ETF, options, forex, crypto, commodities, fundamentals, technical indicators, & more
UUIDv7 Generator
A server for generating version 7 universally unique identifiers (UUIDv7).
MCP Bridge API
A lightweight, LLM-agnostic RESTful proxy that unifies multiple MCP servers under a single API.
Nuxt MCP
MCP server helping models to understand your Vite/Nuxt app better.
OpenAPI Invoker
Invokes any OpenAPI specification through a Model Context Protocol (MCP) server.
Javadoc MCP
A Model Context Protocol (MCP) server for searching Java documentation. This server enables AI assistants to search and retrieve Java API documentation from JSON files.
Hyperlane MCP Server
Integrates with the Hyperlane protocol for cross-chain messaging and smart contract interactions.
MCP My Mac
Exposes local Mac system information through a simple API for AI assistants.
Quick Chart MCP Server
A server for creating charts and visualizations using the Quick Chart API.
Azure DevOps
Interact with Azure DevOps Work Items using the Azure DevOps REST API.
consult7
Analyze large codebases and document collections using high-context models via OpenRouter, OpenAI, or Google AI -- very useful, e.g., with Claude Code