Random Number

Provides LLMs with essential random generation abilities, built entirely on Python's standard library.

Random Number MCP

Production-ready MCP server that provides LLMs with essential random generation abilities, built entirely on Python's standard library.

📺 Demo Video

https://github.com/user-attachments/assets/303a441a-2b10-47e3-b2a5-c8b51840e362

🎲 Tools

ToolPurposePython function
random_intGenerate random integersrandom.randint()
random_floatGenerate random floatsrandom.uniform()
random_choicesChoose items from a list (optional weights)random.choices()
random_shuffleReturn a new list with items shuffledrandom.sample()
secure_token_hexGenerate cryptographically secure hex tokenssecrets.token_hex()
secure_random_intGenerate cryptographically secure integerssecrets.randbelow()

🔧 Setup

Claude Desktop

Add this to your Claude Desktop configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "random-number": {
      "command": "uvx",
      "args": ["random-number-mcp"]
    }
  }
}

📋 Tool Reference

random_int

Generate a random integer between low and high (inclusive).

Parameters:

  • low (int): Lower bound (inclusive)
  • high (int): Upper bound (inclusive)

Example:

{
  "name": "random_int",
  "arguments": {
    "low": 1,
    "high": 100
  }
}

random_float

Generate a random float between low and high.

Parameters:

  • low (float, optional): Lower bound (default: 0.0)
  • high (float, optional): Upper bound (default: 1.0)

Example:

{
  "name": "random_float",
  "arguments": {
    "low": 0.5,
    "high": 2.5
  }
}

random_choices

Choose k items from a population with replacement, optionally weighted.

Parameters:

  • population (list): List of items to choose from
  • k (int, optional): Number of items to choose (default: 1)
  • weights (list, optional): Weights for each item (default: equal weights)

Example:

{
  "name": "random_choices",
  "arguments": {
    "population": ["red", "blue", "green", "yellow"],
    "k": 2,
    "weights": [0.4, 0.3, 0.2, 0.1]
  }
}

random_shuffle

Return a new list with items in random order.

Parameters:

  • items (list): List of items to shuffle

Example:

{
  "name": "random_shuffle",
  "arguments": {
    "items": [1, 2, 3, 4, 5]
  }
}

secure_token_hex

Generate a cryptographically secure random hex token.

Parameters:

  • nbytes (int, optional): Number of random bytes (default: 32)

Example:

{
  "name": "secure_token_hex",
  "arguments": {
    "nbytes": 16
  }
}

secure_random_int

Generate a cryptographically secure random integer below upper_bound.

Parameters:

  • upper_bound (int): Upper bound (exclusive)

Example:

{
  "name": "secure_random_int",
  "arguments": {
    "upper_bound": 1000
  }
}

🔒 Security Considerations

This package provides both standard pseudorandom functions (suitable for simulations, games, etc.) and cryptographically secure functions (suitable for tokens, keys, etc.):

  • Standard functions (random_int, random_float, random_choices, random_shuffle): Use Python's random module - fast but not cryptographically secure
  • Secure functions (secure_token_hex, secure_random_int): Use Python's secrets module - slower but cryptographically secure

🛠️ Development

Prerequisites

  • Python 3.10+
  • uv package manager

Setup

# Clone the repository
git clone https://github.com/example/random-number-mcp
cd random-number-mcp

# Install dependencies
uv sync --dev

# Run tests
uv run pytest

# Run linting
uv run ruff check
uv run ruff format

# Type checking
uv run mypy src/

Building

# Build package
uv build

# Test installation
uv run --with dist/*.whl random-number-mcp

Release

Draft a release with the GitHub UI. The GitHub workflow will automatically sync the release with PyPI.

Testing with MCP Inspector

For exploring and/or developing this server, use the MCP Inspector npm utility:

# Install MCP Inspector
npm install -g @modelcontextprotocol/inspector

# Run local development server with the inspector
npx @modelcontextprotocol/inspector uv run random-number-mcp

# Run PyPI production server with the inspector
npx @modelcontextprotocol/inspector uvx random-number-mcp

📝 License

MIT License - see LICENSE file for details.

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

📚 Links

Related Servers