Provides LLMs with essential random generation abilities, built entirely on Python's standard library.
Essential random number generation utilities from the Python standard library, including pseudorandom and cryptographically secure operations for integers, floats, weighted selections, list shuffling, and secure token generation.
https://github.com/user-attachments/assets/303a441a-2b10-47e3-b2a5-c8b51840e362
Tool | Purpose | Python function |
---|---|---|
random_int | Generate random integers | random.randint() |
random_float | Generate random floats | random.uniform() |
random_choices | Choose items from a list (optional weights) | random.choices() |
random_shuffle | Return a new list with items shuffled | random.sample() |
random_sample | Choose k unique items from population | random.sample() |
secure_token_hex | Generate cryptographically secure hex tokens | secrets.token_hex() |
secure_random_int | Generate cryptographically secure integers | secrets.randbelow() |
Add this to your Claude Desktop configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"random-number": {
"command": "uvx",
"args": ["random-number-mcp"]
}
}
}
random_int
Generate a random integer between low and high (inclusive).
Parameters:
low
(int): Lower bound (inclusive)high
(int): Upper bound (inclusive)Example:
{
"name": "random_int",
"arguments": {
"low": 1,
"high": 100
}
}
random_float
Generate a random float between low and high.
Parameters:
low
(float, optional): Lower bound (default: 0.0)high
(float, optional): Upper bound (default: 1.0)Example:
{
"name": "random_float",
"arguments": {
"low": 0.5,
"high": 2.5
}
}
random_choices
Choose k items from a population with replacement, optionally weighted.
Parameters:
population
(list): List of items to choose fromk
(int, optional): Number of items to choose (default: 1)weights
(list, optional): Weights for each item (default: equal weights)Example:
{
"name": "random_choices",
"arguments": {
"population": ["red", "blue", "green", "yellow"],
"k": 2,
"weights": [0.4, 0.3, 0.2, 0.1]
}
}
random_shuffle
Return a new list with items in random order.
Parameters:
items
(list): List of items to shuffleExample:
{
"name": "random_shuffle",
"arguments": {
"items": [1, 2, 3, 4, 5]
}
}
random_sample
Choose k unique items from population without replacement.
Parameters:
population
(list): List of items to choose fromk
(int): Number of items to chooseExample:
{
"name": "random_sample",
"arguments": {
"population": ["a", "b", "c", "d", "e"],
"k": 2
}
}
secure_token_hex
Generate a cryptographically secure random hex token.
Parameters:
nbytes
(int, optional): Number of random bytes (default: 32)Example:
{
"name": "secure_token_hex",
"arguments": {
"nbytes": 16
}
}
secure_random_int
Generate a cryptographically secure random integer below upper_bound.
Parameters:
upper_bound
(int): Upper bound (exclusive)Example:
{
"name": "secure_random_int",
"arguments": {
"upper_bound": 1000
}
}
This package provides both standard pseudorandom functions (suitable for simulations, games, etc.) and cryptographically secure functions (suitable for tokens, keys, etc.):
random_int
, random_float
, random_choices
, random_shuffle
): Use Python's random
module - fast but not cryptographically securesecure_token_hex
, secure_random_int
): Use Python's secrets
module - slower but cryptographically secure# Clone the repository
git clone https://github.com/example/random-number-mcp
cd random-number-mcp
# Install dependencies
uv sync --dev
# Run tests
uv run pytest
# Run linting
uv run ruff check --fix
uv run ruff format
# Type checking
uv run mypy src/
{
"mcpServers": {
"random-number-dev": {
"command": "uv",
"args": [
"--directory",
"<path_to_your_repo>/random-number-mcp",
"run",
"random-number-mcp"
]
}
}
}
Note: Replace <path_to_your_repo>/random-number-mcp
with the absolute path to your cloned repository.
# Build package
uv build
# Test installation
uv run --with dist/*.whl random-number-mcp
Update Version:
version
number in pyproject.toml
and src/__init__.py
.Update Changelog:
Add a new entry in CHANGELOG.md
for the release.
git diff
context.Update the @CHANGELOG.md for the latest release.
List all significant changes, bug fixes, and new features.
Here's the git diff:
[GIT_DIFF]
Commit along with any other pending changes.
Create GitHub Release:
For exploring and/or developing this server, use the MCP Inspector npm utility:
# Install MCP Inspector
npm install -g @modelcontextprotocol/inspector
# Run local development server with the inspector
npx @modelcontextprotocol/inspector uv run random-number-mcp
# Run PyPI production server with the inspector
npx @modelcontextprotocol/inspector uvx random-number-mcp
MIT License - see LICENSE file for details.
Contributions are welcome! Please feel free to submit a Pull Request.
MCP Server that exposes Creatify AI API capabilities for AI video generation, including avatar videos, URL-to-video conversion, text-to-speech, and AI-powered editing tools.
Aggregates multiple MCP resource servers into a single interface with stdio/sse support.
MCP server for interacting with the Godot game engine, providing tools for editing, running, debugging, and managing scenes in Godot projects.
A MCP Server that enhance your IDE with AI-powered assistance for Intlayer i18n / CMS tool: smart CLI access, versioned docs.
Make your AI agent speak every language on the planet, using Lingo.dev Localization Engine.
AI-powered audio generation using the MiniMax Music API.
ComputerVision-based 🪄 sorcery of image recognition and editing tools for AI assistants.
Server for advanced AI-driven video editing, semantic search, multilingual transcription, generative media, voice cloning, and content moderation.
A Node.js MCP server example for the OpenWeather API, requiring an API key.
Read/write to over 2k blockchains, enabling data querying, contract analysis/deployment, and transaction execution, powered by Thirdweb.