Provides LLMs with essential random generation abilities, built entirely on Python's standard library.
Production-ready MCP server that provides LLMs with essential random generation abilities, built entirely on Python's standard library.
https://github.com/user-attachments/assets/303a441a-2b10-47e3-b2a5-c8b51840e362
Tool | Purpose | Python function |
---|---|---|
random_int | Generate random integers | random.randint() |
random_float | Generate random floats | random.uniform() |
random_choices | Choose items from a list (optional weights) | random.choices() |
random_shuffle | Return a new list with items shuffled | random.sample() |
secure_token_hex | Generate cryptographically secure hex tokens | secrets.token_hex() |
secure_random_int | Generate cryptographically secure integers | secrets.randbelow() |
Add this to your Claude Desktop configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"random-number": {
"command": "uvx",
"args": ["random-number-mcp"]
}
}
}
random_int
Generate a random integer between low and high (inclusive).
Parameters:
low
(int): Lower bound (inclusive)high
(int): Upper bound (inclusive)Example:
{
"name": "random_int",
"arguments": {
"low": 1,
"high": 100
}
}
random_float
Generate a random float between low and high.
Parameters:
low
(float, optional): Lower bound (default: 0.0)high
(float, optional): Upper bound (default: 1.0)Example:
{
"name": "random_float",
"arguments": {
"low": 0.5,
"high": 2.5
}
}
random_choices
Choose k items from a population with replacement, optionally weighted.
Parameters:
population
(list): List of items to choose fromk
(int, optional): Number of items to choose (default: 1)weights
(list, optional): Weights for each item (default: equal weights)Example:
{
"name": "random_choices",
"arguments": {
"population": ["red", "blue", "green", "yellow"],
"k": 2,
"weights": [0.4, 0.3, 0.2, 0.1]
}
}
random_shuffle
Return a new list with items in random order.
Parameters:
items
(list): List of items to shuffleExample:
{
"name": "random_shuffle",
"arguments": {
"items": [1, 2, 3, 4, 5]
}
}
secure_token_hex
Generate a cryptographically secure random hex token.
Parameters:
nbytes
(int, optional): Number of random bytes (default: 32)Example:
{
"name": "secure_token_hex",
"arguments": {
"nbytes": 16
}
}
secure_random_int
Generate a cryptographically secure random integer below upper_bound.
Parameters:
upper_bound
(int): Upper bound (exclusive)Example:
{
"name": "secure_random_int",
"arguments": {
"upper_bound": 1000
}
}
This package provides both standard pseudorandom functions (suitable for simulations, games, etc.) and cryptographically secure functions (suitable for tokens, keys, etc.):
random_int
, random_float
, random_choices
, random_shuffle
): Use Python's random
module - fast but not cryptographically securesecure_token_hex
, secure_random_int
): Use Python's secrets
module - slower but cryptographically secure# Clone the repository
git clone https://github.com/example/random-number-mcp
cd random-number-mcp
# Install dependencies
uv sync --dev
# Run tests
uv run pytest
# Run linting
uv run ruff check
uv run ruff format
# Type checking
uv run mypy src/
# Build package
uv build
# Test installation
uv run --with dist/*.whl random-number-mcp
Draft a release with the GitHub UI. The GitHub workflow will automatically sync the release with PyPI.
For exploring and/or developing this server, use the MCP Inspector npm utility:
# Install MCP Inspector
npm install -g @modelcontextprotocol/inspector
# Run local development server with the inspector
npx @modelcontextprotocol/inspector uv run random-number-mcp
# Run PyPI production server with the inspector
npx @modelcontextprotocol/inspector uvx random-number-mcp
MIT License - see LICENSE file for details.
Contributions are welcome! Please feel free to submit a Pull Request.
Reference / test server with prompts, resources, and tools
Create crafted UI components inspired by the best 21st.dev design engineers.
ALAPI MCP Tools,Call hundreds of API interfaces via MCP
AI-powered SVG animation generator that transforms static files into animated SVG components using the Allyson platform
APIMatic MCP Server is used to validate OpenAPI specifications using APIMatic. The server processes OpenAPI files and returns validation summaries by leveraging APIMatic’s API.
Enable AI agents to interact with the Atla API for state-of-the-art LLMJ evaluation.
Generate images using Amazon Nova Canvas with text prompts and color guidance.
Bring the full power of BrowserStack’s Test Platform to your AI tools, making testing faster and easier for every developer and tester on your team.
Flag features, manage company data, and control feature access using Bucket.
Official MCP server for Buildable AI-powered development platform. Enables AI assistants to manage tasks, track progress, get project context, and collaborate with humans on software projects.