Vedit-MCP
Perform basic video editing operations using natural language commands. Requires ffmpeg to be installed.
Vedit-MCP
This is an MCP service for video editing, which can achieve basic editing operations with just one sentence.
English | 中文
Quick Start
1. Install Dependencies
1.1 Clone this project or directly download the zip package
1.2 Configure the Python environment
- It is recommended to use uv for installation
cd vedit-mcp
uv pip install -r requirements.txt
- Or install directly using pip
pip install -r requirements.txt
1.3 Configure ffmpeg
vedit-mcp.py relies on ffmpeg for implementation. Therefore, please configure ffmpeg.
# For Mac
brew install ffmpeg
# For Ubuntu
sudo apt update
sudo apt install ffmpeg
2. Start the Service
2.1. It is recommended to use google-adk to build your own project
- Please refer to adk-sample
Before executing this sample script
- Please ensure that the path format is at least as follows
- sample
- kb
- raw/test.mp4 // This is the original video you need to process
- adk_sample.py
- vedit_mcp.py
- Please install the following two dependencies
# # adk-sample pip install requirements
# google-adk==0.3.0
# litellm==1.67.2
- Please set the api-key and api-base
Currently, this script uses the API of the Volcano Ark Platform, and you can go there to configure it by yourself.
After obtaining the API_KEY, please configure the API_KEY as an environment variable.
export OPENAI_API_KEY="your-api-key"
- Execute the script
cd sample
python adk_sample.py
- End of execution
After this script is executed correctly and ends, a video result file will be generated in kb/result, and a log file will be generated and the result will be output.
If you need secondary development, you can choose to add vedit_mcp.py to your project for use.
2.2 Or build using cline
Firstly, please ensure that your Python environment and ffmpeg configuration are correct Configure cline_mcp_settings. json as follows
{
"mcpServers": {
"vedit-mcp": {
"command": "python",
"args": [
"vedit_mcp.py",
"--kb_dir",
"your-kb-dir-here"
]
}
}
}
2.3. Execute using the stramlit web interface
To be supplemented
3. precautions
- It is recommended to use the
thinking modelto handle this type of task. Currently, it seems that thethinking modelperforms better in handling this type of task? But no further testing has been conducted, it's just an intuitive feeling.
Related Servers
MCP Character Counter
Analyzes text to provide detailed character counts, including letters, numbers, and symbols.
Summarize MCP
Converts text summaries to speech using OpenAI's Text-to-Speech API and plays them in the background.
ATLAS: Task Management System
A task management system for LLM agents to manage projects, tasks, and knowledge using a Neo4j database for complex workflow automation.
Document Translator
An example MCP server for translating documents, designed for deployment on Cloudflare Workers.
Atlassian
Interact with Atlassian tools like Confluence and Jira.
MCP Currency Converter Server
Provides real-time currency conversion and exchange rate data using the Frankfurter API.
MCP Outlook Tools
Interact with Microsoft Outlook for calendar management, email operations, and search functionality.
Rebrandly
Generate short URLs using the Rebrandly API.
MCP Invoice Parser
Parses invoice data, uploads it to Google Sheets, and answers queries by fetching information from the sheet.
UNO: Unified Narrative Operator
A text enhancement tool that transforms story content into rich, detailed narratives using advanced literary techniques and heuristic analysis.