Vectorize MCP server for advanced retrieval, Private Deep Research, Anything-to-Markdown file extraction and text chunking.
A Model Context Protocol (MCP) server implementation that integrates with Vectorize for advanced Vector retrieval and text extraction.
export VECTORIZE_ORG_ID=YOUR_ORG_ID
export VECTORIZE_TOKEN=YOUR_TOKEN
export VECTORIZE_PIPELINE_ID=YOUR_PIPELINE_ID
npx -y @vectorize-io/vectorize-mcp-server@latest
For one-click installation, click one of the install buttons below:
For the quickest installation, use the one-click install buttons at the top of this section.
To install manually, add the following JSON block to your User Settings (JSON) file in VS Code. You can do this by pressing Ctrl + Shift + P
and typing Preferences: Open User Settings (JSON)
.
{
"mcp": {
"inputs": [
{
"type": "promptString",
"id": "org_id",
"description": "Vectorize Organization ID"
},
{
"type": "promptString",
"id": "token",
"description": "Vectorize Token",
"password": true
},
{
"type": "promptString",
"id": "pipeline_id",
"description": "Vectorize Pipeline ID"
}
],
"servers": {
"vectorize": {
"command": "npx",
"args": ["-y", "@vectorize-io/vectorize-mcp-server@latest"],
"env": {
"VECTORIZE_ORG_ID": "${input:org_id}",
"VECTORIZE_TOKEN": "${input:token}",
"VECTORIZE_PIPELINE_ID": "${input:pipeline_id}"
}
}
}
}
}
Optionally, you can add the following to a file called .vscode/mcp.json
in your workspace to share the configuration with others:
{
"inputs": [
{
"type": "promptString",
"id": "org_id",
"description": "Vectorize Organization ID"
},
{
"type": "promptString",
"id": "token",
"description": "Vectorize Token",
"password": true
},
{
"type": "promptString",
"id": "pipeline_id",
"description": "Vectorize Pipeline ID"
}
],
"servers": {
"vectorize": {
"command": "npx",
"args": ["-y", "@vectorize-io/vectorize-mcp-server@latest"],
"env": {
"VECTORIZE_ORG_ID": "${input:org_id}",
"VECTORIZE_TOKEN": "${input:token}",
"VECTORIZE_PIPELINE_ID": "${input:pipeline_id}"
}
}
}
}
{
"mcpServers": {
"vectorize": {
"command": "npx",
"args": ["-y", "@vectorize-io/vectorize-mcp-server@latest"],
"env": {
"VECTORIZE_ORG_ID": "your-org-id",
"VECTORIZE_TOKEN": "your-token",
"VECTORIZE_PIPELINE_ID": "your-pipeline-id"
}
}
}
}
Perform vector search and retrieve documents (see official API):
{
"name": "retrieve",
"arguments": {
"question": "Financial health of the company",
"k": 5
}
}
Extract text from a document and chunk it into Markdown format (see official API):
{
"name": "extract",
"arguments": {
"base64document": "base64-encoded-document",
"contentType": "application/pdf"
}
}
Generate a Private Deep Research from your pipeline (see official API):
{
"name": "deep-research",
"arguments": {
"query": "Generate a financial status report about the company",
"webSearch": true
}
}
npm install
npm run dev
Change the package.json version and then:
git commit -am "x.y.z"
git tag x.y.z
git push origin
git push origin --tags
Web and local search using Brave's Search API
Search Engine made for AIs by Exa
RAG Search over your content powered by Inkeep
Search the web using Kagi's search API
Interact & query with Meilisearch (Full-text & semantic search API)
Production-ready RAG out of the box to search and retrieve data from your own documents.
An MCP server that connects to Perplexity's Sonar API, enabling real-time web-wide research in conversational AI.
One API for Search, Crawling, and Sitemaps
Search engine for AI agents (search + extract) powered by Tavily
RAG MCP for your Agentset data.