YouTube MCP Server
An MCP server for interacting with YouTube content, enabling AI models to access and manage YouTube data via its API.
YouTube MCP Server
Model Contex Protocol (MCP) server that enables AI models to interact with YouTube content through a standardized interface. This server provides a set of tools for video search, content analysis, comment processing, and more.
š Features
-
š Video Search & Discovery
- Search YouTube videos
- Get trending videos
- Find related content
- Channel information
-
š Content Analysis
- Detailed video information
- Channel statistics
- Video transcripts
- Comprehensive summaries
-
š¬ Social Features
- Comment retrieval
- Comment analysis
- User interaction data
š Quick Start
Prerequisites
1. Installing Python
macOS:
# Using Homebrew (recommended)
brew install python@3.11
# Verify installation
python3 --version # Should show Python 3.11.x
Linux (Ubuntu/Debian):
# Update package list
sudo apt update
# Install Python
sudo apt install python3.11 python3.11-venv
# Verify installation
python3 --version # Should show Python 3.11.x
Windows:
- Download Python installer from python.org
- Run the installer
- Check "Add Python to PATH" during installation
- Open Command Prompt and verify:
python --version # Should show Python 3.11.x
2. Installing uv
macOS/Linux:
# Install uv using the official installer
curl -LsSf https://astral.sh/uv/install.sh | sh
# Verify installation
uv --version
Windows (PowerShell):
# Install uv using the official installer
(Invoke-WebRequest -Uri "https://astral.sh/uv/install.ps1" -UseBasicParsing).Content | pwsh -Command -
# Verify installation
uv --version
Alternative Installation Methods:
Using pip (if you prefer):
# Install uv using pip
pip install uv
# Verify installation
uv --version
3. Setting Up Google Cloud Credentials
-
Create a Google Cloud Project:
# Go to Google Cloud Console https://console.cloud.google.com # Click on "Select a Project" at the top # Click "New Project" # Name it (e.g., "youtube-mcp-server") # Click "Create"
-
Enable YouTube Data API:
# In the Google Cloud Console: # 1. Go to "APIs & Services" > "Library" # 2. Search for "YouTube Data API v3" # 3. Click "Enable"
-
Create OAuth 2.0 Credentials:
# In the Google Cloud Console: # 1. Go to "APIs & Services" > "Credentials" # 2. Click "Create Credentials" > "OAuth client ID" # 3. Select "Desktop app" as application type # 4. Name it (e.g., "YouTube MCP Client") # 5. Click "Create"
-
Download and Store Credentials:
# 1. After creating credentials, click "Download JSON" # 2. Rename the downloaded file to 'credentials.json' # 3. Move it to your project root: mv ~/Downloads/client_secret_*.json ./credentials.json # Verify the file exists and has correct permissions ls -l credentials.json # Should show -rw------- (readable only by you)
-
First-time Authentication:
# Run the server once to authenticate python mcp_videos.py # This will: # 1. Open your browser # 2. Ask you to sign in to Google # 3. Grant permissions to the application # 4. Create a token.pickle file (automatically ignored by git)
ā ļø Important Security Notes:
- Never commit
credentials.json
ortoken.pickle
to git - Keep your credentials secure and don't share them
- If credentials are compromised:
- Go to Google Cloud Console
- Delete the compromised credentials
- Create new credentials
- Update your local
credentials.json
Installation
- Clone the repository:
git clone https://github.com/yourusername/youtube-mcp-server.git
cd youtube-mcp-server
- Create and activate a virtual environment:
# Create virtual environment
python -m venv .venv
# Activate virtual environment
# On macOS/Linux:
source .venv/bin/activate
# On Windows (Command Prompt):
.venv\Scripts\activate
# On Windows (PowerShell):
.venv\Scripts\Activate.ps1
- Install dependencies using uv:
# Install project in editable mode
uv pip install -e .
# If you encounter any SSL errors on macOS, you might need to:
export SSL_CERT_FILE=/etc/ssl/cert.pem
- Set up YouTube API credentials:
- Go to Google Cloud Console
- Create a new project
- Enable YouTube Data API v3
- Create credentials (OAuth 2.0 Client ID)
- Download the credentials and save as
client_secrets.json
Development Setup
For development, you might want to install additional tools:
# Install development dependencies
uv pip install -e ".[dev]"
# Install pre-commit hooks
pre-commit install
Configuration
- Create a
.env
file in the project root:
# Required environment variables
YOUTUBE_API_KEY=your_api_key_here
# Optional configuration
YOUTUBE_API_QUOTA_LIMIT=10000 # Daily quota limit
YOUTUBE_API_REGION=US # Default region
- Verify your setup:
# Check if credentials are properly set up
ls -l credentials.json # Should exist and be readable
ls -l .env # Should exist and be readable
ls -l token.pickle # Should exist after first authentication
# Test the server
python mcp_videos.py
š ļø Usage
Starting the Server
python mcp_videos.py
Available Tools
- Search Videos
@mcp.tool()
async def get_videos(search: str, max_results: int)
- Get Video Info
@mcp.tool()
async def get_video_info(video_id: str)
- Get Channel Details
@mcp.tool()
async def get_channel_details(channel_id: str)
- Get Video Comments
@mcp.tool()
async def get_video_comments_tool(video_id: str, max_results: int = 100)
- Get Trending Videos
@mcp.tool()
async def get_trending_videos_tool(region_code: str = "US", max_results: int = 50)
- Get Related Videos
@mcp.tool()
async def get_related_videos_tool(video_id: str, max_results: int = 25)
- Summarize Video
@mcp.tool()
async def summarize_video(video_id: str, include_comments: bool = True)
- Generate Video Flash Cards
@mcp.tool()
async def generate_video_flashcards(
video_id: str,
max_cards: int = 10,
categories: Optional[List[str]] = None,
difficulty: Optional[str] = None
)
This tool generates educational flash cards from video content:
- Creates different types of cards (Fill in the blank, Q&A, Definition)
- Includes timestamps for video reference
- Categorizes cards by type and difficulty
- Provides card statistics
Example usage:
# Generate 15 flash cards from a video
cards = generate_video_flashcards(
video_id="dQw4w9WgXcQ",
max_cards=15,
categories=["Q&A", "Definition"],
difficulty="Medium"
)
# Generate all types of cards
cards = generate_video_flashcards(
video_id="dQw4w9WgXcQ",
max_cards=20
)
Card Types:
- Fill in the blank: Tests recall of specific terms or concepts
- Q&A: Questions about key points in the video
- Definition: Explains important concepts
Difficulty Levels:
- Easy: Basic recall and understanding
- Medium: Application of concepts
- Hard: Complex concepts and relationships
- Generate Video Quiz
@mcp.tool()
async def generate_video_quiz(video_id: str) -> str
This tool generates a comprehensive quiz from video content:
- Creates multiple choice questions
- Generates true/false statements
- Includes fill-in-the-blank questions
- Uses video metadata, transcript, and description
- Provides answers and explanations
Example usage:
# Generate a quiz from a video
quiz = generate_video_quiz("dQw4w9WgXcQ")
Quiz Features:
-
Multiple Choice Questions
- Based on video content
- Includes video metadata
- Tests understanding of key concepts
-
True/False Questions
- Tests factual knowledge
- Based on video statistics
- Verifies understanding of claims
-
Fill in the Blank
- Tests recall of specific terms
- Uses transcript content
- Focuses on key concepts
Quiz Format:
=== Video Quiz ===
Title: [Video Title]
Channel: [Channel Name]
URL: [Video URL]
Question 1 (Multiple Choice):
[Question text]
1. [Option 1]
2. [Option 2]
3. [Option 3]
4. [Option 4]
Answer: [Correct answer]
------------------
Question 2 (True/False):
[Statement]
Answer: True/False
------------------
Question 3 (Fill in the blank):
[Question with blank]
Answer: [Correct answer]
------------------
The quiz tool:
- Generates exactly 10 questions
- Mixes different question types
- Includes video context
- Provides immediate feedback
- Uses video metadata for questions
- Incorporates transcript content
- Tests different levels of understanding
š Architecture
The project follows a modular architecture:
graph TD
A[LLM Client] --> B[MCP Client]
B --> C[MCP Server]
C --> D[YouTube API]
C --> E[Tool Registry]
C --> F[Data Formatter]
subgraph "Tools"
E --> E1[Video Tools]
E --> E2[Channel Tools]
E --> E3[Comment Tools]
E --> E4[Analysis Tools]
end
š§ Development
Project Structure
youtube-mcp-server/
āāā mcp_videos.py # Main server implementation
āāā youtube_api.py # YouTube API client
āāā yt_helper.py # Helper functions
āāā requirements.txt # Project dependencies
āāā .env # Environment variables
āāā .gitignore # Git ignore rules
āāā README.md # This file
Adding New Tools
- Create a new async function in
mcp_videos.py
- Decorate it with
@mcp.tool()
- Implement the tool logic
- Add appropriate error handling
- Update documentation
š API Documentation
Response Formats
- Video Format
{
"title": str,
"channel_title": str,
"duration": str,
"description": str,
"view_count": int,
"like_count": int,
"comment_count": int,
"url": str,
"published_at": str
}
- Channel Format
{
"title": str,
"subscriber_count": int,
"video_count": int,
"view_count": int,
"description": str,
"published_at": str
}
- Comment Format
{
"author": str,
"text": str,
"like_count": int,
"published_at": str
}
š¤ Contributing
- Fork the repository
- Create a feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
š License
This project is licensed under the MIT License - see the LICENSE file for details.
š Acknowledgments
- FastMCP for the MCP framework
- YouTube Data API for the API
- All contributors and users of this project
š Support
For support, please:
- Check the documentation
- Open an issue
- Contact the maintainers
š Updates
Stay updated with the project:
š Security
Handling Sensitive Data
ā ļø IMPORTANT: Never commit sensitive files to the repository:
token.pickle
client_secrets.json
.env
files- Any other credential files
These files are automatically ignored by .gitignore
, but if you accidentally commit them:
- Remove them from git tracking:
git rm --cached token.pickle
git rm --cached client_secrets.json
- Revoke and regenerate any exposed credentials
- Update your local
.env
file with new credentials - Never share or expose these files publicly
Best Practices
- Always use environment variables for sensitive data
- Keep credentials in
.env
file (already in.gitignore
) - Regularly rotate API keys and tokens
- Use OAuth 2.0 for authentication
- Monitor GitHub's secret scanning alerts
š„ļø Claude Desktop Setup
1. Install Claude Desktop
-
Download Claude Desktop:
- Visit Claude Desktop
- Download the appropriate version for your OS:
- macOS:
.dmg
file - Windows:
.exe
installer - Linux:
.AppImage
or.deb
package
- macOS:
-
Install the Application:
# macOS # 1. Open the .dmg file # 2. Drag Claude to Applications folder # 3. Open from Applications # Windows # 1. Run the .exe installer # 2. Follow the installation wizard # 3. Launch from Start Menu # Linux (Ubuntu/Debian) sudo dpkg -i claude-desktop_*.deb # For .deb package # OR chmod +x Claude-*.AppImage # For AppImage ./Claude-*.AppImage
2. Configure MCP Client
-
Open Claude Desktop Settings:
- Click on the gear icon (āļø) or
- Use keyboard shortcut:
- macOS:
Cmd + ,
- Windows/Linux:
Ctrl + ,
- macOS:
-
Add MCP Configuration:
- Navigate to "MCP Settings" or "Advanced Settings"
- Add the following configuration:
{ "mcpServers": { "youtube_videos": { "command": "uv", "args": [ "--directory", "<your base directory>/youtube-mcp-server", "run", "mcp_videos.py" ] } } }
-
Replace Path:
-
Replace
<your base directory>
with your actual project path -
Example for different OS:
// macOS/Linux "/Users/username/Documents/youtube-mcp-server" // Windows "C:\\Users\\username\\Documents\\youtube-mcp-server"
-
-
Verify Configuration:
# Test the MCP server path cd "<your base directory>/youtube-mcp-server" uv run mcp_videos.py
3. Using Claude with MCP
-
Start Claude Desktop
-
Connect to MCP Server:
- The server should start automatically
- You'll see a connection status indicator
- Available tools will be listed in the interface
-
Test the Connection:
# Try a simple command get_videos("python programming", max_results=5)
Troubleshooting MCP Connection
-
Server Won't Start:
# Check if the path is correct pwd # Should show your project directory # Verify Python environment which python # Should point to your virtual environment # Check uv installation uv --version
-
Connection Issues:
- Verify the server is running
- Check the configuration path
- Ensure all dependencies are installed
- Check the logs in Claude Desktop
-
Common Errors:
# Path not found # Solution: Use absolute path in configuration # Permission denied # Solution: Check file permissions chmod +x mcp_videos.py # Module not found # Solution: Verify virtual environment source .venv/bin/activate # or appropriate activation command
Related Servers
Gemini MCP Server
An MCP server for Google Gemini AI featuring Smart Tool Intelligence and self-contained, configurable preferences.
Metoro
Query and interact with kubernetes environments monitored by Metoro
K8s MCP Server
A server for Kubernetes CLI tools like kubectl, istioctl, helm, and argocd, supporting multi-cluster management via dynamic kubeconfig.
Foreman
Integrate with Foreman to manage hosts and other infrastructure resources.
Graphlit
Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a searchable Graphlit project.
Remote MCP Server on Cloudflare
An MCP server deployed on Cloudflare Workers, featuring OAuth login and data storage via Cloudflare KV.
StreamNative MCP Server
Integrate AI agents with StreamNative Cloud resources and Apache Kafka/Pulsar messaging systems.
Shared Memory MCP
An example project for deploying a remote MCP server on Cloudflare Workers without authentication.
Remote MCP Server (Authless)
A remote MCP server deployable on Cloudflare Workers without authentication.
Dataproc MCP Server
An MCP server for managing Google Cloud Dataproc operations and big data workflows, with seamless integration for VS Code.