Baby-SkyNet
An autonomous memory management system for Claude AI, featuring multi-provider LLM integration and a persistent memory database.
Baby-SkyNet 🤖
Autonomous Memory Management System for Claude AI with Multi-Provider LLM Integration & Graph Database
Ein MCP Server der Claude ein permanentes, durchsuchbares Gedächtnis verleiht - inklusive semantischer Analyse, Multi-Provider LLM Support und Graph-Datenbank Integration.
Was ist das?
Baby-SkyNet erweitert Claude um:
- Persistentes Memory - Erinnerungen überleben Session-Grenzen
- Kategorisierung - Strukturierte Organisation von Wissen
- Volltext-Suche - Finde alte Gespräche und Erkenntnisse
- Semantische Analyse - KI-gestützte Konzept-Extraktion
- Multi-Provider Support - Ollama (lokal) + Anthropic API
- Graph Database - Neo4j Integration für verknüpfte Informationen
Features v2.3
Core Memory Management
- ✅ SQL Database - Robuste, lokale Datenhaltung
- ✅ Kategorien-System - Programmieren, Debugging, Projekte, etc.
- ✅ Volltext-Suche - Durchsuche alle Memories
- ✅ CRUD Operations - Create, Read, Update, Move
Advanced Vector & Graph Storage
- ✅ ChromaDB Integration - Vector-basierte semantische Suche
- ✅ Neo4j Graph Database - Relationship-basierte Memory-Vernetzung
- ✅ Multi-Source Search - Kombinierte Resultate aus allen Datenquellen
- ✅ Graph Analytics - Netzwerk-Statistiken und Beziehungsanalyse
Semantic Analysis Engine
- ✅ Multi-Provider LLM - Ollama (lokal) oder Anthropic API
- ✅ Memory Classification - technical, emotional, procedural, factual
- ✅ Concept Extraction - Automatische Schlüsselkonzept-Extraktion
- ✅ Batch Processing - Asynchrone Analyse mehrerer Memories
- ✅ Metadata Enrichment - Tools, People, Code-Detection
- ✅ Relationship Detection - Automatische semantische Verknüpfungen
Container Management & Auto-Start
- ✅ Podman/Docker Integration - Automatisches Container-Management
- ✅ Auto-Start Services - ChromaDB und Neo4j automatisch starten
- ✅ Health Monitoring - Container-Status in memory_status Tool
- ✅ Smart Recovery - Neustart fehlgeschlagener Container
Quick Start
Voraussetzungen
- Node.js >= 18.0
- TypeScript >= 5.0
- Ollama (optional, für lokale LLM) oder Anthropic API Key
- MCP-kompatible Umgebung (Claude Desktop, etc.)
Installation
# Repository klonen
git clone https://github.com/spie-mkroehn/baby-skynet.git
cd baby-skynet
# Dependencies installieren
npm install
# TypeScript kompilieren
npm run build
# Starten
npm start
Konfiguration
Option 1: Anthropic API (empfohlen)
# .env Datei erstellen
echo "ANTHROPIC_API_KEY=your_api_key_here" > .env
# Mit Claude Haiku starten
node build/index.js --db-path ./claude_memory.db --brain-model claude-3-5-haiku-latest
Option 2: Lokale Ollama
# Ollama installieren und Modell laden
ollama pull llama3.1:latest
# Mit Ollama starten
node build/index.js --db-path ./claude_memory.db --brain-model llama3.1:latest
MCP Integration
In Claude Desktop claude_desktop_config.json:
{
"mcpServers": {
"baby-skynet": {
"command": "node",
"args": [
"/pfad/zu/baby-skynet/build/index.js",
"--db-path", "/pfad/zu/claude_memory.db",
"--brain-model", "claude-3-5-haiku-latest"
],
"env": {
"ANTHROPIC_API_KEY": "your_api_key_here"
}
}
}
}
Neo4j Graph Database (Optional aber empfohlen)
Neo4j Setup:
# 1. Neo4j installieren
# Download von https://neo4j.com/download/
# Oder mit Docker:
docker run --publish=7474:7474 --publish=7687:7687 --volume=$HOME/neo4j/data:/data neo4j
# 2. Environment Variables konfigurieren
cp .env.example .env
# Bearbeite .env mit deinen Neo4j Credentials:
# NEO4J_URL=bolt://localhost:7687
# NEO4J_USER=neo4j
# NEO4J_PASSWORD=your_password
Graph Features nutzen:
save_memory_with_graph- Memory mit automatischer Vernetzungsearch_memories_with_graph- Erweiterte Suche mit Kontextget_memory_graph_context- Beziehungsnetzwerk anzeigenget_graph_statistics- Netzwerk-Statistiken
LLM Client Factory Architecture
Baby-SkyNet verwendet eine zentrale LLMClientFactory zur Verwaltung aller LLM-Provider:
Unterstützte Provider
- Anthropic Claude:
claude-3-sonnet,claude-3-haiku, etc. - Ollama Local Models:
llama2,mistral, etc.
Automatische Provider-Erkennung
import { LLMClientFactory } from './llm/LLMClientFactory.js';
// Automatische Erkennung basierend auf Modellname
const anthropicClient = LLMClientFactory.createClient('claude-3-sonnet');
const ollamaClient = LLMClientFactory.createClient('llama2');
SemanticAnalyzer Integration
Der SemanticAnalyzer nutzt die Factory automatisch:
import { SemanticAnalyzer } from './llm/SemanticAnalyzer.js';
const analyzer = new SemanticAnalyzer('claude-3-sonnet'); // Verwendet Factory intern
🧪 Testing
Baby-SkyNet verfügt über eine umfassende Test-Suite mit 18+ Tests:
# Build & einzelner Test
npm run build
node tests/test-simple.js
# Alle Tests ausführen
Get-ChildItem tests\test-*.js | ForEach-Object { node $_.FullName }
Test-Kategorien:
- Core System Tests (Basis-Funktionalität)
- Integration Tests (End-to-End)
- MCP Interface Tests (Claude Desktop)
- Database Tests (PostgreSQL/SQLite)
- VectorDB Tests (ChromaDB)
- External Service Tests (OpenAI, Neo4j)
📖 Detaillierte Dokumentation: TESTING.md | tests/README.md
✅ JobProcessor Reorganisation (Januar 2025)
Verzeichnisstruktur optimiert
- JobProcessor.ts von
src/jobs/nachsrc/utils/verschoben - Leeres
jobs/Verzeichnis entfernt - Import-Pfade entsprechend aktualisiert
Neue schlanke Struktur:
src/
├── database/ # Alle Datenbank-bezogenen Klassen
├── embedding/ # Embedding-Services
├── llm/ # LLM-Clients und SemanticAnalyzer
├── utils/ # Utilities inkl. JobProcessor
└── index.ts # Hauptdatei
Vorteile:
- Weniger Verzeichnisse → übersichtliche
Related Servers
Scout Monitoring MCP
sponsorPut performance and error data directly in the hands of your AI assistant.
Alpha Vantage MCP Server
sponsorAccess financial market data: realtime & historical stock, ETF, options, forex, crypto, commodities, fundamentals, technical indicators, & more
Jupyter Notebook MCP Server
Interact with Jupyter notebooks, allowing for code execution, cell manipulation, and notebook management.
Union - Unity MCP Server
An MCP server for managing and interacting with Unity projects.
PyPI MCP Server
Search and access Python package metadata, version history, and download statistics from the PyPI repository.
Untun
Create secure tunnels to expose local servers to the internet using untun.
Graph Tools
An interactive graph analysis toolkit with web visualizations and AI-powered analysis capabilities.
MCP Server Toolkit
A comprehensive toolkit for developing, testing, and deploying Model Context Protocol (MCP) servers.
Game Asset Generator
Generate 2D and 3D game assets using AI models hosted on Hugging Face Spaces.
Fluent (ServiceNow SDK)
Manage ServiceNow metadata, modules, records, and tests using Fluent, a TypeScript-based declarative DSL. Supports all ServiceNow SDK CLI commands.
weibaohui/kom
Provides multi-cluster Kubernetes management and operations using MCP, It can be integrated as an SDK into your own project and includes nearly 50 built-in tools covering common DevOps and development scenarios. Supports both standard and CRD resources.
MCP SSH Server
Securely execute remote commands and perform file operations over SSH, with support for both password and key-based authentication.