A healthcare-focused RAG server using Groq API and Chroma for information retrieval from patient records.
HealthcareRAGTools Project
Overview
The HealthcareRAGTools project is an agentic AI system designed to assist healthcare professionals by leveraging Retrieval-Augmented Generation (RAG) techniques. This project integrates a Model Context Protocol (MCP) server with a Chroma vector database to log patient symptoms, retrieve similar cases, and search medical documents. It supports interactive queries via a terminal-based client and can also be used within the Cursor IDE’s agent chat interface.
Project Description
This project enables the following key functionalities:
Tools Used
The project relies on the following tools and technologies:
Python 3.8+: The primary programming language for scripting and server logic. FastMCP: A modular compute platform framework for building and running agentic systems. LangChain: A library for building context-aware language models and agents. LangChain-Groq: Integration with Groq’s API for advanced language model capabilities. Chroma: An open-source vector database for storing and retrieving embeddings of medical documents and patient data. Sentence-Transformers: Used to generate embeddings for text data in the Chroma database. HTTpx: For handling HTTP requests within the system. Python-Dotenv: Manages environment variables, such as the Groq API key. LangChain-Community: Additional community-supported LangChain tools. Requests: For making HTTP requests to external services. UV: A package and virtual environment manager for dependency management. Cursor IDE: The development environment, with plans to enable agent chat functionality.
Directory Structure
The project is organized as follows:
\Desktop\mcpserver\ragmcp
├── .env # Stores the GROQ_API_KEY environment variable
├── .gitignore # Excludes venv, chroma_db, and .env from version control
├── server.py # Main MCP server script with HealthcareRAGTools logic
├── setup_db.py # Script to initialize the Chroma vector database
├── healthcare_client.py # Terminal-based client for interactive queries
├── healthcare.json # Configuration file for the MCP server
├── requirements.txt # Lists project dependencies
├── documents\ # Directory for sample medical documents
│ ├── doc1.txt # Example document: Flu symptoms
│ ├── doc2.txt # Example document: Asthma symptoms
├── patient_records.json # JSON file storing patient symptom data
├── chroma_db\ # Directory for the Chroma vector database
└── ragmcp\ # Virtual environment directory
Setup and Installation
To set up the project on your local machine, follow these steps:
Prerequisites Windows 10/11 with Command Prompt. Python 3.8+ installed. UV (Universal Virtual Environment) installed: pip install uv. A Groq API key from console.groq.com. Steps Create and Activate the Virtual Environment: uv venv ragmcp\Scripts\activate Confirm the prompt shows (ragmcp). Install Dependencies: Ensure requirements.txt exists with the listed dependencies: set UV_LINK_MODE=copy uv pip install -r requirements.txt Configure Environment Variables: Create or edit .env with your Groq API key: GROQ_API_KEY=your-groq-api-key Initialize the Database: Run the setup script to populate the Chroma database with sample documents: uv run python setup_db.py Expected output: Vector database initialized with sample medical documents. Running the Project Terminal-Based Client Start the Client: uv run python healthcare_client.py Expected Output: Loading environment variables... Loading config file: C:\Users\sniki\OneDrive\Desktop\mcpserver\ragmcp\healthcare.json Initializing HealthcareRAGTools chat... MCPClient initialized ChatGroq initialized
===== Interactive HealthcareRAGTools Chat ===== Type 'exit' or 'quit' to end the conversation Type 'clear' to clear conversation history Example queries:
You:
Test a Query: Type: Log symptoms for patient P123: fever and cough, severity Moderate, show similar cases Expected response: Assistant: Symptoms logged for Patient P123: 'fever and cough' (Moderate). Similar cases: None Exit: Type exit or quit.
To run it in Cursor's Agent chat:
Copy the json code into File>Preferences>Cursor Settings>MCP/MCP Tools and run the server as follows:
uv run python server.py
You can use the same queries here as well.
Provides time-related functions such as current time queries, timezone conversions, and time difference calculations.
Provides weather data using the Open-Meteo API.
Enable AI Agents to purchase anything in a secure way using Fewsats
An MCP server for fetching verifiable random numbers from the drand network.
Fulcra Context MCP server for accessing your personal health, workouts, sleep, location, and more, all privately. Built around Context by Fulcra.
PiAPI MCP server makes user able to generate media content with Midjourney/Flux/Kling/Hunyuan/Udio/Trellis directly from Claude or any other MCP-compatible apps.
A server for looking up the daily menu at the Hyteria (B1) restaurant.
A TypeScript-based MCP server for interacting with the Etsy API, featuring a simple notes system.
FastAPI and MCP service providing Islamic prayer times and other useful calculations.
An MCP server for accessing Bazi (Chinese astrology) data, requiring an API key.