Loop MCP Server
Enables LLMs to process array items sequentially with a specific task.
Loop MCP Server
An MCP (Model Context Protocol) server that enables LLMs to process arrays item by item with a specific task.
Overview
This MCP server provides tools for:
- Initializing an array with a task description
- Fetching items one by one or in batches for processing
- Storing results for each processed item or batch
- Retrieving all results (only after all items are processed)
- Optional result summarization
- Configurable batch size for efficient processing
Installation
npm install
Usage
Running the Server
npm start
Available Tools
-
initialize_array - Set up the array and task
array: The array of items to processtask: Description of what to do with each itembatchSize(optional): Number of items to process in each batch (default: 1)
-
get_next_item - Get the next item to process
- Returns: Current item, index, task, and remaining count
-
get_next_batch - Get the next batch of items based on batch size
- Returns: Array of items, indices, task, and remaining count
-
store_result - Store the result of processing
result: The processing result (single value or array for batch processing)
-
get_all_results - Get all results after completion
summarize(optional): Include a summary- Note: This will error if processing is not complete
-
reset - Clear the current processing state
Example Workflows
Single Item Processing
// 1. Initialize
await callTool('initialize_array', {
array: [1, 2, 3, 4, 5],
task: 'Square each number'
});
// 2. Process each item
while (true) {
const item = await callTool('get_next_item');
if (item.text === 'All items have been processed.') break;
// Process the item (e.g., square it)
const result = item.value * item.value;
await callTool('store_result', { result });
}
// 3. Get final results
const results = await callTool('get_all_results', { summarize: true });
Batch Processing
// 1. Initialize with batch size
await callTool('initialize_array', {
array: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
task: 'Double each number',
batchSize: 3
});
// 2. Process in batches
while (true) {
const batch = await callTool('get_next_batch');
if (batch.text === 'All items have been processed.') break;
// Process the batch
const results = batch.items.map(item => item * 2);
await callTool('store_result', { result: results });
}
// 3. Get final results
const results = await callTool('get_all_results', { summarize: true });
Running the Example
node example-client.js
Integration with Claude Desktop
Add to your Claude Desktop configuration:
{
"mcpServers": {
"loop-processor": {
"command": "node",
"args": ["/path/to/loop_mcp/server.js"]
}
}
}
Related Servers
DevContainer MCP Server
Manage DevContainer environments using natural language prompts in any MCP-compatible editor.
MCP to SLOP Adapter
A lightweight adapter connecting MCP clients with any SLOP compatible server.
MCP-Booster
An MCP server with CoConuT (Continuous Chain of Thought) for use with the Cursor IDE, distributed as a global NPM package.
MCP Server Manager for Claude
Install and manage Model Context Protocol (MCP) servers for Claude Desktop.
DevServer MCP
Manages development servers for LLM-assisted workflows, offering programmatic control through a unified TUI and experimental browser automation via Playwright.
MCP Aggregator
A universal aggregator that combines multiple MCP servers into a single endpoint.
Jimeng
Integrates Jimeng AI for image generation.
Geo Location Demo
Retrieves user geolocation information using EdgeOne Pages Functions and exposes it via the Model Context Protocol (MCP).
Kite Trading MCP Server
An MCP server for the Zerodha Kite Connect API, featuring fully automated authentication without manual token handling.
Snak
An agent engine for creating powerful and secure AI Agents powered by Starknet.