Loop MCP Server
Enables LLMs to process array items sequentially with a specific task.
Loop MCP Server
An MCP (Model Context Protocol) server that enables LLMs to process arrays item by item with a specific task.
Overview
This MCP server provides tools for:
- Initializing an array with a task description
- Fetching items one by one or in batches for processing
- Storing results for each processed item or batch
- Retrieving all results (only after all items are processed)
- Optional result summarization
- Configurable batch size for efficient processing
Installation
npm install
Usage
Running the Server
npm start
Available Tools
-
initialize_array - Set up the array and task
array: The array of items to processtask: Description of what to do with each itembatchSize(optional): Number of items to process in each batch (default: 1)
-
get_next_item - Get the next item to process
- Returns: Current item, index, task, and remaining count
-
get_next_batch - Get the next batch of items based on batch size
- Returns: Array of items, indices, task, and remaining count
-
store_result - Store the result of processing
result: The processing result (single value or array for batch processing)
-
get_all_results - Get all results after completion
summarize(optional): Include a summary- Note: This will error if processing is not complete
-
reset - Clear the current processing state
Example Workflows
Single Item Processing
// 1. Initialize
await callTool('initialize_array', {
array: [1, 2, 3, 4, 5],
task: 'Square each number'
});
// 2. Process each item
while (true) {
const item = await callTool('get_next_item');
if (item.text === 'All items have been processed.') break;
// Process the item (e.g., square it)
const result = item.value * item.value;
await callTool('store_result', { result });
}
// 3. Get final results
const results = await callTool('get_all_results', { summarize: true });
Batch Processing
// 1. Initialize with batch size
await callTool('initialize_array', {
array: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
task: 'Double each number',
batchSize: 3
});
// 2. Process in batches
while (true) {
const batch = await callTool('get_next_batch');
if (batch.text === 'All items have been processed.') break;
// Process the batch
const results = batch.items.map(item => item * 2);
await callTool('store_result', { result: results });
}
// 3. Get final results
const results = await callTool('get_all_results', { summarize: true });
Running the Example
node example-client.js
Integration with Claude Desktop
Add to your Claude Desktop configuration:
{
"mcpServers": {
"loop-processor": {
"command": "node",
"args": ["/path/to/loop_mcp/server.js"]
}
}
}
Related Servers
Scout Monitoring MCP
sponsorPut performance and error data directly in the hands of your AI assistant.
Alpha Vantage MCP Server
sponsorAccess financial market data: realtime & historical stock, ETF, options, forex, crypto, commodities, fundamentals, technical indicators, & more
Apple Developer Documentation
Search Apple's official developer documentation for iOS, macOS, SwiftUI, WWDC videos, and more.
Swagger MCP
Scrapes Swagger UI to dynamically generate MCP tools at runtime using LLMs.
Imagen3-MCP
Generate images using Google's Imagen 3.0 model via the Gemini API.
Core Lightning MCP Server
A Rust-based gRPC server that provides a standardized MCP interface for Core Lightning nodes.
Qwen-Agent
A framework for developing LLM applications with capabilities like tool usage, planning, and memory, based on the Qwen model.
MCP Docs Server
Provides direct access to local documentation files through a context.md file in the project root.
JSONPlaceholder
A free public REST API for testing and prototyping, powered by JSONPlaceholder.
MCP RAG Server
A Python server providing Retrieval-Augmented Generation (RAG) functionality. It indexes various document formats and requires a PostgreSQL database with pgvector.
Replicate FLUX.1 Kontext [Max]
Image generation and editing using the FLUX.1 Kontext [Max] model via the Replicate API, featuring advanced text rendering and contextual understanding.
iOS Device Control
An MCP server to control iOS simulators and real devices, enabling AI assistant integration on macOS.