Loop MCP Server
Enables LLMs to process array items sequentially with a specific task.
Loop MCP Server
An MCP (Model Context Protocol) server that enables LLMs to process arrays item by item with a specific task.
Overview
This MCP server provides tools for:
- Initializing an array with a task description
- Fetching items one by one or in batches for processing
- Storing results for each processed item or batch
- Retrieving all results (only after all items are processed)
- Optional result summarization
- Configurable batch size for efficient processing
Installation
npm install
Usage
Running the Server
npm start
Available Tools
-
initialize_array - Set up the array and task
array: The array of items to processtask: Description of what to do with each itembatchSize(optional): Number of items to process in each batch (default: 1)
-
get_next_item - Get the next item to process
- Returns: Current item, index, task, and remaining count
-
get_next_batch - Get the next batch of items based on batch size
- Returns: Array of items, indices, task, and remaining count
-
store_result - Store the result of processing
result: The processing result (single value or array for batch processing)
-
get_all_results - Get all results after completion
summarize(optional): Include a summary- Note: This will error if processing is not complete
-
reset - Clear the current processing state
Example Workflows
Single Item Processing
// 1. Initialize
await callTool('initialize_array', {
array: [1, 2, 3, 4, 5],
task: 'Square each number'
});
// 2. Process each item
while (true) {
const item = await callTool('get_next_item');
if (item.text === 'All items have been processed.') break;
// Process the item (e.g., square it)
const result = item.value * item.value;
await callTool('store_result', { result });
}
// 3. Get final results
const results = await callTool('get_all_results', { summarize: true });
Batch Processing
// 1. Initialize with batch size
await callTool('initialize_array', {
array: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
task: 'Double each number',
batchSize: 3
});
// 2. Process in batches
while (true) {
const batch = await callTool('get_next_batch');
if (batch.text === 'All items have been processed.') break;
// Process the batch
const results = batch.items.map(item => item * 2);
await callTool('store_result', { result: results });
}
// 3. Get final results
const results = await callTool('get_all_results', { summarize: true });
Running the Example
node example-client.js
Integration with Claude Desktop
Add to your Claude Desktop configuration:
{
"mcpServers": {
"loop-processor": {
"command": "node",
"args": ["/path/to/loop_mcp/server.js"]
}
}
}
Related Servers
IBM wxflows
Tool platform by IBM to build, test and deploy tools for any data source
CGM MCP Server
A server for CodeFuse-CGM, a graph-integrated large language model designed for repository-level software engineering tasks.
Infercnv-MCP
Infer Copy Number Variations (CNVs) from single-cell RNA-Seq data using a natural language interface.
OpenAPI MCP Server
Explore and analyze OpenAPI specifications from local files or remote URLs.
uMCP (ultraMCP)
A lightweight Java framework for building MCP servers with TCP transport via mcp-java-bridge.
FreeCAD
Integrate with FreeCAD, a free and open-source parametric 3D modeler, via a Python bridge.
AILint
AI-powered code quality analysis to detect best practice violations, security issues, and architectural problems in real-time.
MCP-Think
A Think Tool for LLMs to record and retrieve their thinking processes during reasoning.
Sentry MCP Server
An MCP server for interacting with the Sentry error tracking and performance monitoring platform.
Polarion MCP Servers
MCP server for integrating with Polarion Application Lifecycle Management (ALM).