Arcanna MCP Server
Interact with Arcanna's AI use cases through the Model Context Protocol (MCP).
Arcanna MCP Server
The Arcanna MCP server allows user to interact with Arcanna's AI use cases through the Model Context Protocol (MCP).
Usage with Claude Desktop or other MCP Clients
Configuration
Add the following entry to the mcpServers section in your MCP client config file (claude_desktop_config.json for Claude
Desktop).
Use docker image (https://hub.docker.com/r/arcanna/arcanna-mcp-server) or PyPi package (https://pypi.org/project/arcanna-mcp-server/)
Building local image from this repository
Prerequisites
Configuration
- Change directory to the directory where the Dockerfile is.
- Run
docker build -t arcanna/arcanna-mcp-server . --progress=plain --no-cache - Add the configuration bellow to your claude desktop/mcp client config.
{
"mcpServers": {
"arcanna-mcp-server": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"ARCANNA_MANAGEMENT_API_KEY",
"-e",
"ARCANNA_HOST",
"arcanna/arcanna-mcp-server"
],
"env": {
"ARCANNA_MANAGEMENT_API_KEY": "<ARCANNA_MANAGEMENT_API_KEY>",
"ARCANNA_HOST": "<YOUR_ARCANNA_HOST_HERE>"
}
}
}
}
Features
- Resource Management: Create, update and retrieve Arcanna resources (jobs, integrations)
- Python Coding: Code generation, execution and saving the code block as an Arcanna integration
- Query Arcanna events: Query events processed by Arcanna
- Job Management: Create, retrieve, start, stop, and train jobs
- Feedback System: Provide feedback on decisions to improve model accuracy
- Health Monitoring: Check server and API key status
Tools
Query Arcanna events
-
query_arcanna_events
- Used to get events processed by Arcanna, multiple filters can be provided
-
get_filter_fields
- used as a helper tool (retrieve Arcanna possible fields to apply filters on)
Resource Management
-
upsert_resources
- Create/update Arcanna resources
-
get_resources
- Retrieve Arcanna resources (jobs/integrations)
-
delete_resources
- Delete Arcanna resources
-
integration_parameters_schema
- used in this context as a helper tool
Python Coding
-
generate_code_agent
- Used to generate code
-
execute_code
- Used to execute the generated code
-
save_code
- Use to save the code block in Arcanna pipeline as an integration
Job Management
-
start_job
- Begin event ingestion for a job
-
stop_job
- Stop event ingestion for a job
-
train_job
- Train the job's AI model using the provided feedback
Feedback System
- add_feedback_to_event
- Provide feedback on AI decisions for model improvement
System Health
- health_check
- Verify server status and Management API key validity
- Returns Management API key authorization status
Related Servers
Gemini
Provides access to Google Gemini AI capabilities as tools.
SiteBay
Manage your SiteBay WordPress hosting platform. Handle sites, execute server commands, and manage staging environments via natural language.
Akamai MCP Server
Automate Akamai resource actions using a conversational AI client. Requires Akamai API credentials.
Remote MCP Server
A production-ready MCP server on Cloudflare Workers with GitHub OAuth and Fantasy Premier League integration.
Alpaca
Interact with the Alpaca trading API for stock trading, market data, and account management.
MCP Server for Kubernetes
A server for managing Kubernetes clusters using the Model Context Protocol.
OpenRouter
Access over 400 AI models from OpenRouter's collection.
Google Play Store
Integrates with Google Play Store command-line tools, enabling AI assistants to manage apps via the Play Console API.
Beyond Menu Salesforce MCP
Integrate with Salesforce to perform actions like testing connections and running queries.
Remote MCP Server on Cloudflare
A remote MCP server designed to run on Cloudflare Workers, featuring OAuth login support.