Arcanna MCP Server
Interact with Arcanna's AI use cases through the Model Context Protocol (MCP).
Arcanna MCP Server
The Arcanna MCP server allows user to interact with Arcanna's AI use cases through the Model Context Protocol (MCP).
Usage with Claude Desktop or other MCP Clients
Configuration
Add the following entry to the mcpServers section in your MCP client config file (claude_desktop_config.json for Claude
Desktop).
Use docker image (https://hub.docker.com/r/arcanna/arcanna-mcp-server) or PyPi package (https://pypi.org/project/arcanna-mcp-server/)
Building local image from this repository
Prerequisites
Configuration
- Change directory to the directory where the Dockerfile is.
- Run
docker build -t arcanna/arcanna-mcp-server . --progress=plain --no-cache - Add the configuration bellow to your claude desktop/mcp client config.
{
"mcpServers": {
"arcanna-mcp-server": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"ARCANNA_MANAGEMENT_API_KEY",
"-e",
"ARCANNA_HOST",
"arcanna/arcanna-mcp-server"
],
"env": {
"ARCANNA_MANAGEMENT_API_KEY": "<ARCANNA_MANAGEMENT_API_KEY>",
"ARCANNA_HOST": "<YOUR_ARCANNA_HOST_HERE>"
}
}
}
}
Features
- Resource Management: Create, update and retrieve Arcanna resources (jobs, integrations)
- Python Coding: Code generation, execution and saving the code block as an Arcanna integration
- Query Arcanna events: Query events processed by Arcanna
- Job Management: Create, retrieve, start, stop, and train jobs
- Feedback System: Provide feedback on decisions to improve model accuracy
- Health Monitoring: Check server and API key status
Tools
Query Arcanna events
-
query_arcanna_events
- Used to get events processed by Arcanna, multiple filters can be provided
-
get_filter_fields
- used as a helper tool (retrieve Arcanna possible fields to apply filters on)
Resource Management
-
upsert_resources
- Create/update Arcanna resources
-
get_resources
- Retrieve Arcanna resources (jobs/integrations)
-
delete_resources
- Delete Arcanna resources
-
integration_parameters_schema
- used in this context as a helper tool
Python Coding
-
generate_code_agent
- Used to generate code
-
execute_code
- Used to execute the generated code
-
save_code
- Use to save the code block in Arcanna pipeline as an integration
Job Management
-
start_job
- Begin event ingestion for a job
-
stop_job
- Stop event ingestion for a job
-
train_job
- Train the job's AI model using the provided feedback
Feedback System
- add_feedback_to_event
- Provide feedback on AI decisions for model improvement
System Health
- health_check
- Verify server status and Management API key validity
- Returns Management API key authorization status
Related Servers
AWS MCP Servers
A suite of MCP servers providing AI applications with access to AWS documentation, contextual guidance, and best practices.
CData Zoho Inventory Server
A read-only MCP server by CData for querying live Zoho Inventory data.
Authless Remote MCP Server
An authentication-free, remote MCP server designed for deployment on Cloudflare Workers.
Name.com
Manage domains using the Name.com API.
Chronosphere
Fetch logs, metrics, traces, and events from the Chronosphere observability platform.
MCP Google Map Server
Integrates Google Maps API for location-based queries and data processing.
T-Invest MCP Server
An MCP server for interacting with the T-Invest API, providing access to investment and financial data.
招投标大数据服务
Provides cloud migration services, including asset usage analysis, technology stack evaluation, and migration planning.
Elementary
Expose data observability, lineage, test results & incidents to AI agents via MCP
Spring AI Weather Server
An MCP server providing weather tools from the National Weather Service (weather.gov) API, built with Spring Boot.