Arcanna MCP Server
Interact with Arcanna's AI use cases through the Model Context Protocol (MCP).
Arcanna MCP Server
The Arcanna MCP server allows user to interact with Arcanna's AI use cases through the Model Context Protocol (MCP).
Usage with Claude Desktop or other MCP Clients
Configuration
Add the following entry to the mcpServers section in your MCP client config file (claude_desktop_config.json for Claude
Desktop).
Use docker image (https://hub.docker.com/r/arcanna/arcanna-mcp-server) or PyPi package (https://pypi.org/project/arcanna-mcp-server/)
Building local image from this repository
Prerequisites
Configuration
- Change directory to the directory where the Dockerfile is.
- Run
docker build -t arcanna/arcanna-mcp-server . --progress=plain --no-cache - Add the configuration bellow to your claude desktop/mcp client config.
{
"mcpServers": {
"arcanna-mcp-server": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"ARCANNA_MANAGEMENT_API_KEY",
"-e",
"ARCANNA_HOST",
"arcanna/arcanna-mcp-server"
],
"env": {
"ARCANNA_MANAGEMENT_API_KEY": "<ARCANNA_MANAGEMENT_API_KEY>",
"ARCANNA_HOST": "<YOUR_ARCANNA_HOST_HERE>"
}
}
}
}
Features
- Resource Management: Create, update and retrieve Arcanna resources (jobs, integrations)
- Python Coding: Code generation, execution and saving the code block as an Arcanna integration
- Query Arcanna events: Query events processed by Arcanna
- Job Management: Create, retrieve, start, stop, and train jobs
- Feedback System: Provide feedback on decisions to improve model accuracy
- Health Monitoring: Check server and API key status
Tools
Query Arcanna events
-
query_arcanna_events
- Used to get events processed by Arcanna, multiple filters can be provided
-
get_filter_fields
- used as a helper tool (retrieve Arcanna possible fields to apply filters on)
Resource Management
-
upsert_resources
- Create/update Arcanna resources
-
get_resources
- Retrieve Arcanna resources (jobs/integrations)
-
delete_resources
- Delete Arcanna resources
-
integration_parameters_schema
- used in this context as a helper tool
Python Coding
-
generate_code_agent
- Used to generate code
-
execute_code
- Used to execute the generated code
-
save_code
- Use to save the code block in Arcanna pipeline as an integration
Job Management
-
start_job
- Begin event ingestion for a job
-
stop_job
- Stop event ingestion for a job
-
train_job
- Train the job's AI model using the provided feedback
Feedback System
- add_feedback_to_event
- Provide feedback on AI decisions for model improvement
System Health
- health_check
- Verify server status and Management API key validity
- Returns Management API key authorization status
Related Servers
Bigeye MCP Server
Interact with Bigeye's data quality monitoring platform via its Datawatch API. Supports dynamic API key authentication.
OpenMeteo MCP Server
Access global weather data and forecasts using the OpenMeteo API, including current conditions, historical data, and location search.
Kontent.ai
Create, manage, and explore your content and content model using natural language in any MCP-compatible AI tool.
Ntropy MCP server
Enrich banking data using the Ntropy API.
kubeview-mcp
Read-only MCP server for AI-powered Kubernetes debugging with support of code execution
SharePoint MCP Server
Integrates with Microsoft SharePoint, allowing interaction with documents, folders, and other SharePoint resources.
Yandex Cloud
An unofficial server for interacting with the Yandex Cloud API.
Netbird
List and analyze Netbird network peers, groups, policies, and more.
AWS SES
Send emails using AWS Simple Email Service (SES). Supports plain text, HTML, CC, BCC, reply-to, and email scheduling.
Railway MCP Server
Manage Railway infrastructure through natural language using the Railway API.