Google AI Search MCP
A server providing Google AI-powered search and documentation tools for developers.
Google AI Search MCP
This project implements a Model Context Protocol (MCP) server that provides a comprehensive suite of Google AI-powered search and documentation tools specifically designed to help AI coders overcome LLM knowledge gaps and information limitations.
Features
- Provides access to Google AI models (Vertex AI and Gemini API) via specialized MCP tools.
- Focuses on real-time information retrieval and documentation-based analysis.
- Supports web search grounding for current information that LLMs lack.
- Configurable model ID, temperature, streaming behavior, max output tokens, and retry settings via environment variables.
- Uses streaming API by default for potentially better responsiveness.
- Includes basic retry logic for transient API errors.
- Minimal safety filters applied (
BLOCK_NONE) to reduce potential blocking (use with caution).
Tools Provided
Core Search & Documentation Tools
answer_query_websearch: Developer-focused natural language queries with automatic technical detection, enhanced search methodology, and comprehensive code formatting using Google AI with real-time search results.explain_topic_with_docs: Streamlined technical explanations with improved debugging scenarios, synthesizing information from official documentation with reduced verbosity and enhanced troubleshooting guidance.get_doc_snippets: Enhanced code snippet retrieval with progressive complexity examples, advanced search patterns, version-specific targeting, and comprehensive context for technical queries from official documentation.generate_project_guidelines: Generates comprehensive structured project guidelines documents based on specified technologies, using web search for current best practices and industry standards.
Advanced Analysis Tools
code_analysis_with_docs: Evidence-based code analysis with standardized citations, severity categorization, and actionable recommendations by comparing code against official documentation best practices.technical_comparison: Enhanced technology comparison with quantitative benchmarks, performance metrics, market adoption statistics, and detailed evidence-based analysis across multiple criteria.architecture_pattern_recommendation: Comprehensive architecture guidance with performance metrics, quantitative benefits, detailed implementation roadmaps, and evidence-based pattern recommendations for specific use cases.
(Note: Input/output schemas for each tool are defined in their respective files within src/tools/ and exposed via the MCP server.)
Prerequisites
- Node.js (v18+)
- Bun (
npm install -g bun) - Google Cloud Project with Billing enabled (if using Vertex AI).
- Vertex AI API enabled in the GCP project (if using Vertex AI).
- Google Cloud Authentication configured in your environment (Application Default Credentials via
gcloud auth application-default loginis recommended, or a Service Account Key) OR Gemini API key.
Setup & Installation
- Clone/Place Project: Ensure the project files are in your desired location.
- Install Dependencies:
bun install - Configure Environment:
- Create a
.envfile in the project root (copy.env.example). - Set the required and optional environment variables as described in
.env.example.- Set
AI_PROVIDERto either"vertex"or"gemini". - If
AI_PROVIDER="vertex",GOOGLE_CLOUD_PROJECTis required. - If
AI_PROVIDER="gemini",GEMINI_API_KEYis required.
- Set
- Create a
- Build the Server:
This compiles the TypeScript code tobun run buildbuild/index.js.
Usage (Standalone / NPX)
Once published to npm, you can run this server directly using npx:
# Ensure required environment variables are set (e.g., GOOGLE_CLOUD_PROJECT or GEMINI_API_KEY)
bunx google-ai-search-mcp
Alternatively, install it globally:
bun install -g google-ai-search-mcp
# Then run:
google-ai-search-mcp
Note: Running standalone requires setting necessary environment variables (like GOOGLE_CLOUD_PROJECT, GOOGLE_CLOUD_LOCATION, GEMINI_API_KEY, authentication credentials if not using ADC) in your shell environment before executing the command.
Running with Cline
-
Configure MCP Settings: Add/update the configuration in your Cline MCP settings file (e.g.,
.roo/mcp.json). You have two primary ways to configure the command:Option A: Using Node (Direct Path - Recommended for Development)
This method uses
nodeto run the compiled script directly. It's useful during development when you have the code cloned locally.{ "mcpServers": { "google-ai-search-mcp": { "command": "node", "args": [ "/full/path/to/your/google-ai-search-mcp/build/index.js" // Use absolute path or ensure it's relative to where Cline runs node ], "env": { // --- General AI Configuration --- "AI_PROVIDER": "vertex", // "vertex" or "gemini" // --- Required (Conditional) --- "GOOGLE_CLOUD_PROJECT": "YOUR_GCP_PROJECT_ID", // Required if AI_PROVIDER="vertex" // "GEMINI_API_KEY": "YOUR_GEMINI_API_KEY", // Required if AI_PROVIDER="gemini" // --- Optional Model Selection --- "VERTEX_MODEL_ID": "gemini-2.5-pro", // If AI_PROVIDER="vertex" (Example override) "GEMINI_MODEL_ID": "gemini-2.5-pro", // If AI_PROVIDER="gemini" // --- Optional AI Parameters --- "GOOGLE_CLOUD_LOCATION": "us-central1", // Specific to Vertex AI "AI_TEMPERATURE": "0.0", "AI_USE_STREAMING": "true", "AI_MAX_OUTPUT_TOKENS": "65536", // Default from .env.example "AI_MAX_RETRIES": "3", "AI_RETRY_DELAY_MS": "1000", // --- Optional Vertex Authentication --- // "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json" // If using Service Account Key for Vertex }, "disabled": false, "alwaysAllow": [ // Add tool names here if you don't want confirmation prompts // e.g., "answer_query_websearch" ], "timeout": 3600 // Optional: Timeout in seconds } // Add other servers here... } }- Important: Ensure the
argspath points correctly to thebuild/index.jsfile. Using an absolute path might be more reliable.
Option B: Using NPX (Requires Package Published to npm)
This method uses
npxto automatically download and run the server package from the npm registry. This is convenient if you don't want to clone the repository.{ "mcpServers": { "google-ai-search-mcp": { "command": "bunx", // Use bunx "args": [ "-y", // Auto-confirm installation "google-ai-search-mcp" // The npm package name ], "env": { // --- General AI Configuration --- "AI_PROVIDER": "vertex", // "vertex" or "gemini" // --- Required (Conditional) --- "GOOGLE_CLOUD_PROJECT": "YOUR_GCP_PROJECT_ID", // Required if AI_PROVIDER="vertex" // "GEMINI_API_KEY": "YOUR_GEMINI_API_KEY", // Required if AI_PROVIDER="gemini" // --- Optional Model Selection --- "VERTEX_MODEL_ID": "gemini-2.5-pro", // If AI_PROVIDER="vertex" (Example override) "GEMINI_MODEL_ID": "gemini-2.5-pro", // If AI_PROVIDER="gemini" // --- Optional AI Parameters --- "GOOGLE_CLOUD_LOCATION": "us-central1", // Specific to Vertex AI "AI_TEMPERATURE": "0.0", "AI_USE_STREAMING": "true", "AI_MAX_OUTPUT_TOKENS": "65536", // Default from .env.example "AI_MAX_RETRIES": "3", "AI_RETRY_DELAY_MS": "1000", // --- Optional Vertex Authentication --- // "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json" // If using Service Account Key for Vertex }, "disabled": false, "alwaysAllow": [ // Add tool names here if you don't want confirmation prompts // e.g., "answer_query_websearch" ], "timeout": 3600 // Optional: Timeout in seconds } // Add other servers here... } }- Ensure the environment variables in the
envblock are correctly set, either matching.envor explicitly defined here. Remove comments from the actual JSON file.
- Important: Ensure the
-
Restart/Reload Cline: Cline should detect the configuration change and start the server.
-
Use Tools: You can now use the comprehensive list of Google AI-powered search and documentation tools via Cline.
Development
- Watch Mode:
bun run watch - Build:
bun run build - Inspector:
bun run inspector
License
This project is licensed under the MIT License - see the LICENSE file for details.
Related Servers
독립유공자 공훈록
Query records of Korean independence activists from the Ministry of Patriots and Veterans Affairs.
Parquet MCP Server
An MCP server for web and similarity search, designed for Claude Desktop. It integrates with various external embedding and API services.
Scholarly
Search for academic articles using scholarly vendors.
MCP Deep Search
A server for performing deep web searches using the @just-every/search library, requiring API keys via an environment file.
grep.app Code Search
Search code across millions of public GitHub repositories using the grep.app API.
Academic Paper Search
Search and retrieve academic paper information from multiple sources like Semantic Scholar and CrossRef.
Agently MCP
Discover public A2A agents on the Agently platform using its public API.
展会大数据服务
Query comprehensive exhibition information, including enterprise participation records, venue details, and exhibition search.
Shodan
Query the Shodan API for network reconnaissance, DNS operations, vulnerability tracking, and device discovery.
Spryker Search Tool
Search Spryker packages, documentation, and code within Spryker GitHub repositories using natural language.