Google AI Search MCP
A server providing Google AI-powered search and documentation tools for developers.
Google AI Search MCP
This project implements a Model Context Protocol (MCP) server that provides a comprehensive suite of Google AI-powered search and documentation tools specifically designed to help AI coders overcome LLM knowledge gaps and information limitations.
Features
- Provides access to Google AI models (Vertex AI and Gemini API) via specialized MCP tools.
- Focuses on real-time information retrieval and documentation-based analysis.
- Supports web search grounding for current information that LLMs lack.
- Configurable model ID, temperature, streaming behavior, max output tokens, and retry settings via environment variables.
- Uses streaming API by default for potentially better responsiveness.
- Includes basic retry logic for transient API errors.
- Minimal safety filters applied (
BLOCK_NONE
) to reduce potential blocking (use with caution).
Tools Provided
Core Search & Documentation Tools
answer_query_websearch
: Developer-focused natural language queries with automatic technical detection, enhanced search methodology, and comprehensive code formatting using Google AI with real-time search results.explain_topic_with_docs
: Streamlined technical explanations with improved debugging scenarios, synthesizing information from official documentation with reduced verbosity and enhanced troubleshooting guidance.get_doc_snippets
: Enhanced code snippet retrieval with progressive complexity examples, advanced search patterns, version-specific targeting, and comprehensive context for technical queries from official documentation.generate_project_guidelines
: Generates comprehensive structured project guidelines documents based on specified technologies, using web search for current best practices and industry standards.
Advanced Analysis Tools
code_analysis_with_docs
: Evidence-based code analysis with standardized citations, severity categorization, and actionable recommendations by comparing code against official documentation best practices.technical_comparison
: Enhanced technology comparison with quantitative benchmarks, performance metrics, market adoption statistics, and detailed evidence-based analysis across multiple criteria.architecture_pattern_recommendation
: Comprehensive architecture guidance with performance metrics, quantitative benefits, detailed implementation roadmaps, and evidence-based pattern recommendations for specific use cases.
(Note: Input/output schemas for each tool are defined in their respective files within src/tools/
and exposed via the MCP server.)
Prerequisites
- Node.js (v18+)
- Bun (
npm install -g bun
) - Google Cloud Project with Billing enabled (if using Vertex AI).
- Vertex AI API enabled in the GCP project (if using Vertex AI).
- Google Cloud Authentication configured in your environment (Application Default Credentials via
gcloud auth application-default login
is recommended, or a Service Account Key) OR Gemini API key.
Setup & Installation
- Clone/Place Project: Ensure the project files are in your desired location.
- Install Dependencies:
bun install
- Configure Environment:
- Create a
.env
file in the project root (copy.env.example
). - Set the required and optional environment variables as described in
.env.example
.- Set
AI_PROVIDER
to either"vertex"
or"gemini"
. - If
AI_PROVIDER="vertex"
,GOOGLE_CLOUD_PROJECT
is required. - If
AI_PROVIDER="gemini"
,GEMINI_API_KEY
is required.
- Set
- Create a
- Build the Server:
This compiles the TypeScript code tobun run build
build/index.js
.
Usage (Standalone / NPX)
Once published to npm, you can run this server directly using npx
:
# Ensure required environment variables are set (e.g., GOOGLE_CLOUD_PROJECT or GEMINI_API_KEY)
bunx google-ai-search-mcp
Alternatively, install it globally:
bun install -g google-ai-search-mcp
# Then run:
google-ai-search-mcp
Note: Running standalone requires setting necessary environment variables (like GOOGLE_CLOUD_PROJECT
, GOOGLE_CLOUD_LOCATION
, GEMINI_API_KEY
, authentication credentials if not using ADC) in your shell environment before executing the command.
Running with Cline
-
Configure MCP Settings: Add/update the configuration in your Cline MCP settings file (e.g.,
.roo/mcp.json
). You have two primary ways to configure the command:Option A: Using Node (Direct Path - Recommended for Development)
This method uses
node
to run the compiled script directly. It's useful during development when you have the code cloned locally.{ "mcpServers": { "google-ai-search-mcp": { "command": "node", "args": [ "/full/path/to/your/google-ai-search-mcp/build/index.js" // Use absolute path or ensure it's relative to where Cline runs node ], "env": { // --- General AI Configuration --- "AI_PROVIDER": "vertex", // "vertex" or "gemini" // --- Required (Conditional) --- "GOOGLE_CLOUD_PROJECT": "YOUR_GCP_PROJECT_ID", // Required if AI_PROVIDER="vertex" // "GEMINI_API_KEY": "YOUR_GEMINI_API_KEY", // Required if AI_PROVIDER="gemini" // --- Optional Model Selection --- "VERTEX_MODEL_ID": "gemini-2.5-pro", // If AI_PROVIDER="vertex" (Example override) "GEMINI_MODEL_ID": "gemini-2.5-pro", // If AI_PROVIDER="gemini" // --- Optional AI Parameters --- "GOOGLE_CLOUD_LOCATION": "us-central1", // Specific to Vertex AI "AI_TEMPERATURE": "0.0", "AI_USE_STREAMING": "true", "AI_MAX_OUTPUT_TOKENS": "65536", // Default from .env.example "AI_MAX_RETRIES": "3", "AI_RETRY_DELAY_MS": "1000", // --- Optional Vertex Authentication --- // "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json" // If using Service Account Key for Vertex }, "disabled": false, "alwaysAllow": [ // Add tool names here if you don't want confirmation prompts // e.g., "answer_query_websearch" ], "timeout": 3600 // Optional: Timeout in seconds } // Add other servers here... } }
- Important: Ensure the
args
path points correctly to thebuild/index.js
file. Using an absolute path might be more reliable.
Option B: Using NPX (Requires Package Published to npm)
This method uses
npx
to automatically download and run the server package from the npm registry. This is convenient if you don't want to clone the repository.{ "mcpServers": { "google-ai-search-mcp": { "command": "bunx", // Use bunx "args": [ "-y", // Auto-confirm installation "google-ai-search-mcp" // The npm package name ], "env": { // --- General AI Configuration --- "AI_PROVIDER": "vertex", // "vertex" or "gemini" // --- Required (Conditional) --- "GOOGLE_CLOUD_PROJECT": "YOUR_GCP_PROJECT_ID", // Required if AI_PROVIDER="vertex" // "GEMINI_API_KEY": "YOUR_GEMINI_API_KEY", // Required if AI_PROVIDER="gemini" // --- Optional Model Selection --- "VERTEX_MODEL_ID": "gemini-2.5-pro", // If AI_PROVIDER="vertex" (Example override) "GEMINI_MODEL_ID": "gemini-2.5-pro", // If AI_PROVIDER="gemini" // --- Optional AI Parameters --- "GOOGLE_CLOUD_LOCATION": "us-central1", // Specific to Vertex AI "AI_TEMPERATURE": "0.0", "AI_USE_STREAMING": "true", "AI_MAX_OUTPUT_TOKENS": "65536", // Default from .env.example "AI_MAX_RETRIES": "3", "AI_RETRY_DELAY_MS": "1000", // --- Optional Vertex Authentication --- // "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json" // If using Service Account Key for Vertex }, "disabled": false, "alwaysAllow": [ // Add tool names here if you don't want confirmation prompts // e.g., "answer_query_websearch" ], "timeout": 3600 // Optional: Timeout in seconds } // Add other servers here... } }
- Ensure the environment variables in the
env
block are correctly set, either matching.env
or explicitly defined here. Remove comments from the actual JSON file.
- Important: Ensure the
-
Restart/Reload Cline: Cline should detect the configuration change and start the server.
-
Use Tools: You can now use the comprehensive list of Google AI-powered search and documentation tools via Cline.
Development
- Watch Mode:
bun run watch
- Build:
bun run build
- Inspector:
bun run inspector
License
This project is licensed under the MIT License - see the LICENSE file for details.
Related Servers
Academia MCP
Search for scientific publications across ArXiv, ACL Anthology, HuggingFace Datasets, and Semantic Scholar.
OpenAI WebSearch
Provides web search functionality for AI assistants using the OpenAI API, enabling access to up-to-date information.
Perplexity MCP Zerver
Interact with Perplexity.ai using Puppeteer without an API key. Requires Node.js and stores chat history locally.
Eventbrite
Interact with the Eventbrite API to search for events, get event details, and retrieve venue information.
Cryptocurrency Price
A service to query real-time cryptocurrency prices.
NRTSearch
Exposes Lucene-based search indexes to AI assistants through the NRTSearch MCP server.
Search Intent MCP
Analyzes user search keyword intent for SEO support using the AI Search Intent API.
PubMed MCP Server
Search and download scientific articles from PubMed's E-utilities API.
Qdrant MCP Server
Semantic code search using the Qdrant vector database and OpenAI embeddings.
Vectorize
Vectorize MCP server for advanced retrieval, Private Deep Research, Anything-to-Markdown file extraction and text chunking.