SCMCP
A natural language interface for single-cell RNA sequencing (scRNA-Seq) analysis, supporting various modules from IO to enrichment.
SCMCP
An MCP server for scRNA-Seq analysis with natural language!
🪩 What can it do?
- IO module: Read and write scRNA-Seq data with natural language
- Preprocessing module: Filtering, quality control, normalization, scaling, highly-variable genes, PCA, Neighbors,...
- Tool module: Clustering, differential expression, etc.
- Plotting module: Violin plots, heatmaps, dotplots
- Cell-cell communication analysis
- Pseudotime analysis
- Enrichment analysis
❓ Who is this for?
- Anyone who wants to do scRNA-Seq analysis using natural language!
- Agent developers who want to call scanpy's functions for their applications
🌐 Where to use it?
You can use scmcp in most AI clients, plugins, or agent frameworks that support the MCP:
- AI clients, like Cherry Studio
- Plugins, like Cline
- Agent frameworks, like Agno
📚 Documentation
scmcphub's complete documentation is available at https://docs.scmcphub.org
🎬 Demo
A demo showing scRNA-Seq cell cluster analysis in an AI client Cherry Studio using natural language based on scmcp:
https://github.com/user-attachments/assets/93a8fcd8-aa38-4875-a147-a5eeff22a559
🏎️ Quickstart
Install
Install from PyPI:
pip install scmcp
You can test it by running:
scmcp run
🚀 Running Modes
SCMCP provides two distinct run modes to accommodate different user needs and preferences:
1. Tool Mode
In tool mode, SCMCP provides a curated set of predefined functions that the LLM can select and execute.
Advantages:
- Stable: Predefined functions ensure consistent and reliable execution
- Predictable: Known behavior and expected outputs
- Safe: Controlled environment with validated operations
Disadvantages:
- Limited flexibility: Restricted to available predefined functions; you need to define new tools when you need customization functions
Usage
Running in terminal:
scmcp run --run-mode tool
Configure MCP client:
{
"mcpServers": {
"scmcp": {
"command": "/home/test/bin/scmcp",
"args": ["run", "--run-mode", "tool"]
}
}
}
Examples:
2. Code Mode
In code mode, SCMCP provides a Jupyter backend that allows the LLM to generate and execute custom code. Additionally, it can generate complete Jupyter notebooks containing executable code, analysis results, and visualizations.
This mode is based on the project: https://github.com/huang-sh/abcoder
Advantages:
- Highly flexible: Can create custom workflows and combine operations freely
- Extensible: Supports any Python code and external libraries
- Interactive: Real-time code execution and debugging capabilities
Disadvantages:
- Less stable: Code generation may vary each time
Usage
Running in terminal:
scmcp run --run-mode code
Configure MCP client:
{
"mcpServers": {
"scmcp": {
"command": "/home/test/bin/scmcp",
"args": ["run", "--run-mode", "code"]
}
}
}
Example: https://youtu.be/3jtXIeapslI
📝 Mode Comparison
| Feature | Tool Mode | Code Mode |
|---|---|---|
| Execution Method | Predefined functions | Custom code generation |
| Stability | High (consistent) | Lower (variable) |
| Flexibility | Limited to available tools | Highly flexible |
| Safety | Controlled environment | Full Python execution |
| Use Case | Standard workflows | Custom analysis |
| Learning Curve | Easy to use | Requires Python knowledge |
🌐 Remote Deployment
For both modes, you can also run SCMCP remotely:
Remote Setup
Start the server:
# Tool mode
scmcp run --transport shttp --port 8000 --run-mode tool
# Code mode
scmcp run --transport shttp --port 8000 --run-mode code
Configure your MCP client:
{
"mcpServers": {
"scmcp": {
"url": "http://localhost:8000/mcp"
}
}
}
🤝 Contributing
If you have any questions, welcome to submit an issue, or contact me (hsh-me@outlook.com). Contributions to the code are also welcome!
Citing
If you use scmcp in your research, please consider citing the following works:
Wolf, F., Angerer, P. & Theis, F. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol 19, 15 (2018). https://doi.org/10.1186/s13059-017-1382-0
Dimitrov D., Schäfer P.S.L, Farr E., Rodriguez Mier P., Lobentanzer S., Badia-i-Mompel P., Dugourd A., Tanevski J., Ramirez Flores R.O. and Saez-Rodriguez J. LIANA+ provides an all-in-one framework for cell–cell communication inference. Nat Cell Biol (2024). https://doi.org/10.1038/s41556-024-01469-w
Badia-i-Mompel P., Vélez Santiago J., Braunger J., Geiss C., Dimitrov D., Müller-Dott S., Taus P., Dugourd A., Holland C.H., Ramirez Flores R.O. and Saez-Rodriguez J. 2022. decoupleR: ensemble of computational methods to infer biological activities from omics data. Bioinformatics Advances. https://doi.org/10.1093/bioadv/vbac016
Weiler, P., Lange, M., Klein, M. et al. CellRank 2: unified fate mapping in multiview single-cell data. Nat Methods 21, 1196–1205 (2024). https://doi.org/10.1038/s41592-024-02303-9
Related Servers
MCP Inspector
A developer tool for testing and debugging MCP servers with a web UI and proxy.
Build-Scout
Interact with various build systems including Gradle, Maven, NPM/Yarn, Cargo, Python, Makefile, and CMake.
Remote MCP Server Authless Test
An example of deploying a remote MCP server on Cloudflare Workers without authentication.
Gemini CLI
Integrates with the unofficial Google Gemini CLI, allowing file access within configured directories.
GitHub Workflow Debugger MCP
Diagnose and fix GitHub Actions workflow failures using the GitHub API.
CodeAlive MCP
Provides semantic code search and codebase interaction features via the CodeAlive API.
Claude Project Coordinator
Manage and coordinate multiple Xcode/Swift projects with features like project tracking, smart search, and analytics.
FileScopeMCP
Analyzes your codebase identifying important files based on dependency relationships. Generates diagrams and importance scores per file, helping AI assistants understand the codebase. Automatically parses popular programming languages, Python, Lua, C, C++, Rust, Zig.
Learn MCP
A sample project for learning MCP development, featuring a calculator for math operations and a prompt flow server for various templates.
SensorMCP Server
Automate dataset creation and train custom object detection models using natural language.