FAIM Time-Series forecasting
Zero-shot Time-Series forecasting with foundation time-series models
FAIM MCP Server
A Model Context Protocol (MCP) server that integrates the FAIM time series forecasting SDK with any MCP-compatible AI assistant, enabling AI-powered forecasting capabilities.
NPM Package: @faim-group/mcp
Overview
This MCP server currently exposes two foundation time-series models from the FAIM API for zero-shot forecasting:
- Chronos2
- TiRex
Key Features
✅ Two MCP Tools:
list_models: Returns available forecasting models and capabilitiesforecast: Performs point and probabilistic time series forecasting
✅ Flexible Input Formats:
- 1D arrays: Single univariate time series
- 3D arrays: batch/sequence/feature format
✅ Probabilistic Forecasting:
- Point forecasts (single value predictions)
- Quantile forecasts (confidence intervals)
- Sample forecasts (distribution samples)
- Custom quantile levels for risk assessment
Installation
Prerequisites
- Node.js 20+
- npm 10+
- FAIM API key: Register at https://faim.it.com/ to get your
FAIM_API_KEY
Remote MCP Server — Useful for Workflow Automation Tools like n8n
The MCP server is deployed remotely.
To use the remote MCP server, send requests to the following endpoint:
Provide your FAIM API key using Bearer authentication.
Local MCP server
Option 1: Install from npm (Recommended)
Configure your client to use it directly with npx:
{
"mcpServers": {
"faim": {
"command": "npx",
"args": ["-y", "@faim-group/mcp"],
"env": {
"FAIM_API_KEY": "your-api-key-here"
}
}
}
}
No installation required - npx will automatically download and run the latest version.
Alternatively, if you prefer to install globally first:
npm install -g @faim-group/mcp
Then in config:
{
"mcpServers": {
"faim": {
"command": "faim-mcp",
"env": {
"FAIM_API_KEY": "your-api-key-here"
}
}
}
}
Option 2: Clone and Build Locally
# Clone the repository
git clone <repository-url>
cd faim-mcp
# Install dependencies
npm install
# Build the project
npm run build
# Run tests
npm test
# Run type checker
npm run lint
Then use the local path:
{
"mcpServers": {
"faim": {
"command": "node",
"args": ["/path/to/faim-mcp/dist/index.js"],
"env": {
"FAIM_API_KEY": "your-api-key-here"
}
}
}
}
Examples
n8n Workflow - Demand Forecasting
An example n8n workflow for demand forecasting is available in examples/n8n/demand_forecasting.json. This workflow demonstrates how to integrate the FAIM MCP server with n8n for automated demand forecasting tasks.
To use this example:
- Open n8n
- Import the workflow from
n8n_examples/demand_forecasting.json - Configure your FAIM API key in the MCP connection settings
- Execute the workflow with your time series data
Configuration
Environment Variables
# Required: Your FAIM API key
export FAIM_API_KEY="your-api-key-here"
# Optional: Set to non-production for verbose logging
export NODE_ENV=development
MCP Compatibility
This server implements the Model Context Protocol (MCP), an open protocol for connecting AI assistants to external tools and data sources. It works with any LLM and application that implements an MCP client.
Using with Any LLM or System
This server implements the standard MCP protocol and works with any application that implements an MCP client:
- Direct MCP client implementation
- AI framework adapters that support MCP
- IDE extensions that expose MCP tools to any LLM
- Custom middleware that translates between MCP and your LLM's tool calling format
Usage
Starting the Server
# Build and start the server
npm run build
node dist/index.js
The server will:
- Read the API key from environment
- Initialize the FAIM client
- Listen on stdin for JSON-RPC requests
- Send responses to stdout
Tool 1: List Models
Returns available forecasting models and their capabilities.
Request:
{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/list",
"params": {}
}
Response:
{
"jsonrpc": "2.0",
"id": 1,
"result": {
"tools": [
{
"name": "list_models",
"description": "...",
"inputSchema": { ... }
},
{
"name": "forecast",
"description": "...",
"inputSchema": { ... }
}
]
}
}
Tool 2: Forecast
Performs time series forecasting using FAIM models.
Request (Point Forecast):
{
"jsonrpc": "2.0",
"id": 2,
"method": "tools/call",
"params": {
"name": "forecast",
"arguments": {
"model": "chronos2",
"x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
"horizon": 10,
"output_type": "point"
}
}
}
Request (Quantile Forecast with Confidence Intervals):
{
"jsonrpc": "2.0",
"id": 3,
"method": "tools/call",
"params": {
"name": "forecast",
"arguments": {
"model": "chronos2",
"x": [[[100, 50], [102, 51], [105, 52]]],
"horizon": 5,
"output_type": "quantiles",
"quantiles": [0.1, 0.5, 0.9]
}
}
}
Response:
{
"jsonrpc": "2.0",
"id": 2,
"result": {
"success": true,
"data": {
"model_name": "chronos2",
"model_version": "1.0",
"output_type": "point",
"forecast": {
"point": [[[11], [12], [13], ...]]
},
"metadata": {
"token_count": 150,
"duration_ms": 245
},
"shape_info": {
"input_shape": [1, 10, 1],
"output_shape": [1, 10, 1]
}
}
}
}
Project Structure
faim-mcp/
├── src/
│ ├── index.ts # MCP server entry point
│ ├── types.ts # TypeScript interfaces
│ ├── tools/
│ │ ├── list-models.ts # List models tool
│ │ └── forecast.ts # Forecasting tool
│ └── utils/
│ ├── client.ts # FAIM client singleton
│ ├── validation.ts # Input validation
│ └── errors.ts # Error transformation
├── tests/
│ ├── tools/
│ │ ├── list-models.test.ts
│ │ └── forecast.test.ts
│ └── utils/
│ ├── validation.test.ts
│ └── errors.test.ts
├── dist/ # Built output
│ ├── index.js # ESM bundle
│ ├── index.cjs # CommonJS bundle
│ ├── index.d.ts # Type declarations
│ └── *.map # Source maps
└── package.json, tsconfig.json, tsup.config.ts, vitest.config.ts
Testing
The project includes comprehensive tests for:
- Input Validation: Valid/invalid inputs, edge cases, boundary values
- Error Handling: SDK errors, JavaScript errors, error classification
- Tool Functionality: Response structure, model availability
- Type Safety: TypeScript compilation, type guards
Run tests:
npm test # Run all tests
npm run test:coverage # Run with coverage report
npm run test:ui # Run with UI dashboard
Debugging
Enable verbose logging:
NODE_ENV=development node dist/index.js
Output goes to stderr (not interfering with stdout JSON-RPC).
Building and Deployment
Build for Production
npm run build
Outputs:
dist/index.js- ESM moduledist/index.cjs- CommonJS moduledist/index.d.ts- Type declarations- Source maps for debugging
Deployment Checklist
- Set
FAIM_API_KEYenvironment variable - Run
npm run build - Run
npm testto verify - Deploy
dist/directory - Run
node dist/index.jsas the server process
Troubleshooting
"FAIM_API_KEY not set"
export FAIM_API_KEY="your-key-here"
node dist/index.js
"Module not found" errors
npm install
npm run build
Server not responding
- Check that stdout/stderr are properly connected
- Verify JSON-RPC format of requests
- Check logs for error messages
- Ensure FAIM API is accessible
License
MIT
Related Servers
OpenFoodTox Food Chemical Hazards
MCP server providing tools to access EFSA's comprehensive OpenFoodTox Chemical Hazards in food dataset
Bazi Calculation
A professional Bazi (Chinese astrology) calculation server providing full analysis including four pillars, five elements, zodiac, and lunar dates with timezone support.
NWC MCP Server
Control a Lightning wallet using Nostr Wallet Connect (NWC).
EduBase
Interact with EduBase, a comprehensive e-learning platform with advanced quizzing, exam management, and content organization capabilities
CS2 RCON MCP
A server for managing Counter-Strike 2 servers using the RCON protocol.
Atris MCP for Audius
Access the Audius music platform via LLMs, with 105 tools covering most of the Audius Protocol API.
VMS Integration
Connects to a CCTV recording program (VMS) to retrieve recorded and live video streams and control the VMS software.
Time Server
An MCP server that exposes datetime information to agentic systems and chat REPLs.
Salaah MCP
FastAPI and MCP service providing Islamic prayer times and other useful calculations.
OP.GG
Access real-time gaming data across popular titles like League of Legends, TFT, and Valorant, offering champion analytics, esports schedules, meta compositions, and character statistics.