MCP Chain
A composable middleware framework for building sophisticated MCP server chains, inspired by Ruby Rack.
MCP Chain
A composable middleware framework for building MCP server chains, inspired by Ruby Rack. MCP Chain lets you create transparent proxies that sit between MCP clients and servers, transforming requests and responses using Python functions.
MCP Chain solves the problem of adding cross-cutting concerns (authentication, logging, request transformation) to existing MCP servers without modifying them. It uses a transparent proxy pattern where each middleware layer appears as a standard MCP server to clients while forwarding requests to downstream servers. Middleware can also orchestrate multiple MCP calls behind the scenes using AI, transforming granular APIs into intelligent MCPs that perform complex multi-step tasks.
Quickstart
Install and run with uvx
- no setup required:
# cli_server.py
from mcp_chain import mcp_chain, CLIMCPServer
cli_server = CLIMCPServer(
name="dev-tools",
commands=["git", "ls", "grep"],
descriptions={
"git": "Git version control operations",
"ls": "List directory contents",
"grep": "Search text patterns"
}
)
# Auto-detected by CLI
chain = mcp_chain().then(cli_server)
uvx mcp-chain cli_server.py
Add to your mcp.json
:
{
"mcpServers": {
"dev-tools": {
"command": "uvx",
"args": ["mcp-chain", "cli_server.py"]
}
}
}
Examples
Authentication Middleware
Add authentication to any MCP server:
from mcp_chain import mcp_chain, ExternalMCPServer, serve
def require_auth(next_server, request_dict):
if not request_dict.get("auth_token"):
return {"error": "Authentication required", "code": 401}
return next_server.handle_request(request_dict)
chain = (mcp_chain()
.then(None, require_auth)
.then(ExternalMCPServer("postgres", "postgres-mcp")))
serve(chain, name="Authenticated Postgres")
Request/Response Transformation
Transform metadata and requests:
from mcp_chain import mcp_chain, CLIMCPServer
def add_company_context(next_server, metadata_dict):
metadata = next_server.get_metadata()
for tool in metadata.get("tools", []):
tool["description"] = f"ACME Corp: {tool.get('description', '')}"
return metadata
def add_headers(next_server, request_dict):
request_dict["headers"] = {"X-Company": "ACME"}
response = next_server.handle_request(request_dict)
response["processed_by"] = "acme-proxy"
return response
cli_server = CLIMCPServer(name="tools", commands=["git", "docker"])
chain = (mcp_chain()
.then(add_company_context, add_headers)
.then(cli_server))
Multiple Middleware Chain
Stack authentication, logging, and transformation:
import logging
from mcp_chain import mcp_chain, ExternalMCPServer, serve
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("mcp-chain")
def auth_middleware(next_server, request_dict):
if not request_dict.get("auth_token"):
return {"error": "Authentication required", "code": 401}
return next_server.handle_request(request_dict)
def logging_middleware(next_server, request_dict):
logger.info(f"Request: {request_dict.get('method')}")
response = next_server.handle_request(request_dict)
logger.info(f"Response: {response.get('result', 'error')}")
return response
def context_middleware(next_server, metadata_dict):
metadata = next_server.get_metadata()
for tool in metadata.get("tools", []):
tool["description"] = f"Enterprise: {tool.get('description', '')}"
return metadata
chain = (mcp_chain()
.then(context_middleware, auth_middleware)
.then(None, logging_middleware)
.then(ExternalMCPServer("postgres", "postgres-mcp")))
serve(chain, name="Enterprise Postgres")
Programmatic Usage
Use the serve()
function directly:
from mcp_chain import mcp_chain, CLIMCPServer, serve
def rate_limit_middleware(next_server, request_dict):
# Add rate limiting logic
return next_server.handle_request(request_dict)
cli_server = CLIMCPServer(name="secure-tools", commands=["git"])
chain = mcp_chain().then(None, rate_limit_middleware).then(cli_server)
serve(chain, name="Rate Limited Tools", port=8000)
Architecture
MCP Chain uses a functional middleware pattern where each layer transforms requests/responses and forwards to the next layer:
graph TD
A["MCP Client"] --> B["FastMCP"]
B --> C["mcp_chain()"]
C --> D1["middleware_1"]
D1 --> D2["middleware_2"]
D2 --> E["downstream_server"]
E -- "response" --> D2
D2 -- "response" --> D1
D1 -- "response" --> C
C -- "response" --> B
B -- "response" --> A
Each middleware layer:
- Receives requests from the previous layer (or client)
- Transforms the request/metadata using Python dictionaries
- Forwards to the next layer (or downstream server)
- Receives the response back
- Transforms the response as needed
- Returns to the previous layer (or client)
Core Principles:
- Transparent Proxy: Each middleware appears as a standard MCP server to clients
- Dict-Based Processing: Internal processing uses Python dicts, not JSON strings
- Composable: Middleware can chain together since each layer is an MCP server
- Zero Overhead: No serialization/deserialization in the middleware chain
Built on the official FastMCP SDK for complete MCP protocol compliance.
API
Core Functions
from mcp_chain import mcp_chain, serve, CLIMCPServer, ExternalMCPServer
# Create a chain
chain = mcp_chain()
# Add middleware layers
chain = chain.then(metadata_transformer, request_transformer)
chain = chain.then(downstream_server)
# Start server
serve(chain, name="My Server", port=8000)
Chain Building
# Metadata transformer (transforms server capabilities)
def metadata_transformer(next_server, metadata_dict):
metadata = next_server.get_metadata()
# Transform metadata dict and return
return metadata
# Request transformer (transforms requests/responses)
def request_transformer(next_server, request_dict):
# Transform request dict
response = next_server.handle_request(request_dict)
# Transform response dict and return
return response
# Add to chain
chain = mcp_chain().then(metadata_transformer, request_transformer)
Built-in Servers
# CLI server - exposes command-line tools as MCP tools
cli_server = CLIMCPServer(
name="my-tools",
commands=["git", "docker", "npm"],
descriptions={
"git": "Git operations",
"docker": "Container management",
"npm": "Package management"
}
)
# External server proxy
external_server = ExternalMCPServer("server-name", "command-to-run")
Auto-Detection
The CLI automatically detects chain variables in your Python files:
# Any of these variable names work:
chain = mcp_chain().then(...)
my_chain = mcp_chain().then(...)
server_chain = mcp_chain().then(...)
proxy = mcp_chain().then(...)
Run with: uvx mcp-chain filename.py
Development
This project was developed primarily using AI assistants and is designed for AI-assisted development workflows. The codebase is structured to be easily understood and modified by AI tools. The ai/
folder contains context documents and design notes specifically for AI assistants working on this repository.
Installation
# Development install
git clone https://github.com/ronie-uliana/mcp-chain
cd mcp-chain
uv sync
Testing
# Fast unit tests
uv run pytest tests/ -m "not integration" -v
# Integration tests (with timeout protection)
timeout 30 uv run pytest tests/ -m integration -v
# All tests
timeout 45 uv run pytest tests/ -v
# Local CI pipeline
./scripts/test-ci.sh
Publishing
uv build && uv publish
Releases are automatically published to PyPI via GitHub Actions on new releases.
Installation Options
# Recommended: Run with uvx (no installation)
uvx mcp-chain my_chain.py
# Install from PyPI
pip install mcp-chain
# Run installed version
python -m mcp_chain my_chain.py
# or
mcp-chain my_chain.py
Related Servers
AI Image Generation
Generate images using the Together AI API. Supports custom aspect ratios, save paths, and batch generation.
MCP Chart Server
Generates TradingView chart visualizations using the Chart-IMG API.
my-mcp-server
A template for building Model Context Protocol (MCP) servers using the mcp-framework for Node.js.
gluestack-ui MCP Server
An MCP server tailored for React Native–first development using Gluestack UI
IBM wxflows
Tool platform by IBM to build, test and deploy tools for any data source
DevContainer MCP Server
Manage DevContainer environments using natural language prompts in any MCP-compatible editor.
Replicate FLUX.1 Kontext [Max]
Image generation and editing using the FLUX.1 Kontext [Max] model via the Replicate API, featuring advanced text rendering and contextual understanding.
Zeplin
Official Zeplin server for AI-assisted UI development.
Remote MCP Server (Authless)
An example of a remote MCP server deployable on Cloudflare Workers without authentication.
Mermaid
Generate mermaid diagram and chart with AI MCP dynamically.