Berry MCP Server
A universal framework for easily creating and deploying Model Context Protocol servers with any tools.
Berry MCP Server
A universal Model Context Protocol (MCP) server framework that makes it easy to create and deploy custom tool servers for AI assistants like Claude.
✨ Features
- 🔧 Universal Framework: Create MCP servers for any type of tools
- 🎯 Simple Tool Creation: Decorator-based tool registration with automatic JSON schema generation
- 🔌 Plugin Architecture: Load tools from any Python module or package
- 🚀 Multiple Transports: Support for stdio and HTTP/SSE communication
- ⚙️ Flexible Configuration: Environment variables and command-line options
- 📝 Auto-Documentation: Automatic tool discovery and schema generation
- 🔒 Type Safety: Full type annotation support with validation
🚀 Quick Start
Installation
# Install from PyPI (when published)
uv add berry-mcp
# Or install from source
git clone https://github.com/richinex/berry-mcp-server.git
cd berry-mcp-server
uv pip install -e .
Create Your First Tool
# my_tools.py
from berry_mcp.tools.decorators import tool
@tool(description="Add two numbers together")
def add_numbers(a: float, b: float) -> float:
"""Add two numbers and return the result"""
return a + b
@tool(description="Generate a greeting message")
def greet(name: str, title: str = "friend") -> str:
"""Generate a personalized greeting"""
return f"Hello {title} {name}!"
Run Your Server
# Load your custom tools
BERRY_MCP_TOOLS_PATH=my_tools uv run python -m berry_mcp
# Or run with built-in example tools
uv run python -m berry_mcp
VS Code Integration
Add to your .vscode/mcp.json
:
{
"inputs": [],
"servers": {
"my-custom-tools": {
"type": "stdio",
"command": "uv",
"args": ["run", "python", "-m", "berry_mcp"],
"env": {
"BERRY_MCP_TOOLS_PATH": "my_tools"
}
}
}
}
📖 Documentation
- VS Code Configuration Guide - Complete setup instructions
- Tool Development Guide - Create custom tools
- API Documentation - Technical reference
🛠️ Built-in Tools
Berry MCP comes with example tools to get you started:
- Math Operations:
add_numbers
,generate_random
- Text Processing:
format_text
,find_replace_text
,encode_decode_text
- System Info:
get_system_info
,generate_uuid
- Data Tools:
validate_json
,generate_report
- Async Examples:
async_process_text
🔧 Advanced Usage
Multiple Tool Sources
BERRY_MCP_TOOLS_PATH="my_tools,web_tools,data_processors" uv run python -m berry_mcp
HTTP Server Mode
uv run python -m berry_mcp --transport http --port 8080
Environment Configuration
export BERRY_MCP_SERVER_NAME="my-custom-server"
export BERRY_MCP_LOG_LEVEL="DEBUG"
export BERRY_MCP_TOOLS_PATH="my_tools,another_module.tools"
uv run python -m berry_mcp
🏗️ Architecture
Berry MCP follows SOLID principles with a clean, extensible architecture:
- MCPServer: Core server orchestration
- ToolRegistry: Plugin-based tool management
- Transport Layer: Abstracted communication (stdio/HTTP)
- Protocol Handler: JSON-RPC message processing
- Tool Framework: Decorator-based tool creation
📋 Requirements
- Python 3.10+
- MCP protocol support
- Type annotations for automatic schema generation
🤝 Contributing
- Fork the repository
- Create a feature branch:
git checkout -b feature/amazing-feature
- Make your changes following the existing patterns
- Add tests for new functionality
- Run the test suite:
pytest tests/
- Submit a pull request
📝 License
MIT License - see LICENSE file for details.
🙏 Acknowledgments
- Built on the Model Context Protocol
- Inspired by the need for easy MCP server creation
- Following clean code principles and design patterns
🚀 Start building your custom MCP tools today with Berry MCP Server!
Related Servers
Nessus MCP Server
An MCP server for interacting with the Tenable Nessus vulnerability scanner.
Hyperlane MCP Server
Integrates with the Hyperlane protocol for cross-chain messaging and smart contract interactions.
Bruno MCP Server
Execute Bruno collections using the Bruno CLI, with support for environment files and detailed test results.
SCAST
Analyzes source code to generate UML and flow diagrams with AI-powered explanations.
MCPCLIHost
A CLI host that allows Large Language Models (LLMs) to interact with external tools using the Model Context Protocol (MCP).
Honeybadger
Interact with the Honeybadger API for error monitoring and reporting using LLMs.
Windsor
Windsor MCP enables your LLM to query, explore, and analyze your full-stack business data integrated into Windsor.ai with zero SQL writing or custom scripting.
Nuxt MCP
MCP server helping models to understand your Vite/Nuxt app better.
cli-mcp
A command-line interface (CLI) client for calling tools from local and remote MCP servers.
Zero-Vector v3
A server for Zero-Vector's hybrid vector-graph persona and memory management system, featuring advanced LangGraph workflow capabilities.