Slack
An MCP server for interacting with the Slack API, allowing for sending messages, managing channels, and other workspace actions.
slack-mcp
A Model Context Protocol (MCP) server that enables AI assistants to interact with Slack workspaces. This server provides a bridge between AI tools and Slack, allowing you to read messages, post content, and manage Slack channels programmatically through MCP-compatible clients.
What is this and why should I use it?
This MCP server transforms your Slack workspace into an AI-accessible environment. Instead of manually switching between your AI assistant and Slack, you can now:
- Read channel messages - Get real-time updates and conversation history
- Post messages and commands - Send text, files, or execute Slack commands
- Manage reactions - Add emoji reactions to messages
- Join channels - Automatically join new channels as needed
- Thread conversations - Maintain context in threaded discussions
Key Benefits
- Seamless Integration: Connect your AI assistant directly to Slack without manual copy-pasting
- Automated Workflows: Build AI-powered Slack bots that can read, analyze, and respond to messages
- Enhanced Productivity: Let AI help manage notifications, summarize conversations, or automate routine Slack tasks
- Real-time Collaboration: Enable AI assistants to participate in team discussions and provide instant insights
Use Cases
- Team Assistant: Have an AI that can read team updates and provide summaries
- Notification Manager: Automatically categorize and respond to incoming messages
- Knowledge Base: AI that can search through channel history and provide context
- Meeting Scheduler: AI that can read meeting requests and help coordinate schedules
Running with Podman or Docker
You can run the slack-mcp server in a container using Podman or Docker:
Example configuration for running with Podman:
{
"mcpServers": {
"slack": {
"command": "podman",
"args": [
"run",
"-i",
"--rm",
"-e", "SLACK_XOXC_TOKEN",
"-e", "SLACK_XOXD_TOKEN",
"-e", "MCP_TRANSPORT",
"-e", "LOGS_CHANNEL_ID",
"quay.io/redhat-ai-tools/slack-mcp"
],
"env": {
"SLACK_XOXC_TOKEN": "xoxc-...",
"SLACK_XOXD_TOKEN": "xoxd-...",
"MCP_TRANSPORT": "stdio",
"LOGS_CHANNEL_ID": "C7000000"
}
}
}
}
Running with non-stdio transport
To run the server with a non-stdio transport (such as SSE), set the MCP_TRANSPORT environment variable to a value other than stdio (e.g., sse).
Example configuration to connect to a non-stdio MCP server:
{
"mcpServers": {
"slack": {
"url": "https://slack-mcp.example.com/sse",
"headers": {
"X-Slack-Web-Token": "xoxc-...",
"X-Slack-Cookie-Token": "xoxd-..."
}
}
}
}
Extract your Slack XOXC and XOXD tokens easily using browser extensions or Selenium automation: https://github.com/maorfr/slack-token-extractor.
Related Servers
Vapi MCP Server
A server for integrating with Vapi's voice AI APIs using function calls.
mcp-proxy
A standalone proxy to connect STDIO-based MCP clients with HTTP (SSE) based MCP servers.
Slack MCP Server
A server for integrating with Slack, enabling communication and automation within your workspace.
TikTok
TikTok integration for getting post details and video subtitles
Gmail MCP Server
Allows AI agents to search Gmail threads, learn your writing style, and draft emails.
MCP IDE Bridge
An open-source messaging server for client-to-client communication using MCP HTTP Streamable messaging.
Telegram MCP Server
Interact with a Telegram account using the user client API, allowing AI assistants to manage chats and messages.
Integration App
Interact with any other SaaS applications on behalf of your customers.
Gmail MCP
Manage your Gmail account, including sending, reading, and organizing emails.
DeepL
Translate text using the DeepL API.