NeuroDev MCP Server

A powerful Model Context Protocol (MCP) server that supercharges your Python development workflow with AI-powered code review, intelligent test generation, and comprehensive test execution.

๐Ÿง  NeuroDev MCP Server

Intelligent Code Analysis, Test Generation & Execution

Python 3.8+ MCP License: MIT Tests

A powerful Model Context Protocol (MCP) server that supercharges your Python development workflow with AI-powered code review, intelligent test generation, and comprehensive test execution.

Features โ€ข Installation โ€ข Quick Start โ€ข Tools โ€ข Examples


โœจ Features

๐Ÿ” Code Review

  • 6 Powerful Analyzers
    • pylint - Code quality & PEP8
    • flake8 - Style enforcement
    • mypy - Type checking
    • bandit - Security scanning
    • radon - Complexity metrics
    • AST - Custom inspections
  • Real-time issue detection
  • Security vulnerability scanning
  • Complexity & maintainability scores

๐Ÿงช Test Generation

  • Intelligent AST Analysis
    • Auto-generate pytest tests
    • Happy path coverage
    • Edge case handling
    • Exception testing
    • Type validation tests
  • Supports functions & classes
  • Type-hint aware

โ–ถ๏ธ Test Execution

  • Comprehensive Testing
    • Isolated environment
    • Coverage reporting
    • Line-by-line analysis
    • Timeout protection
  • Detailed pass/fail results
  • Performance metrics

๐ŸŽจ Code Formatting

  • Auto-formatting
    • black - Opinionated style
    • autopep8 - PEP8 compliance
  • Configurable line length
  • Consistent code style
  • One-command formatting

๐Ÿ“ฆ Installation

Quick Install

```bash

# Clone the repository
git clone https://github.com/ravikant1918/neurodev-mcp.git
cd neurodev-mcp

# Create virtual environment (recommended)
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\\Scripts\\activate

# Install the package
pip install -e .
\`\`\`

### **Verify Installation**

\`\`\`bash
# Run tests (should show 15/15 passing)
python test_installation.py

# Test the server
python -m neurodev_mcp.server
\`\`\`

<details>
<summary><b>๐Ÿ“ Project Structure</b> (click to expand)</summary>

\`\`\`
neurodev-mcp/
โ”œโ”€ neurodev_mcp/              # ๐Ÿ“ฆ Main package
โ”‚   โ”œโ”€ __init__.py            # Package exports
โ”‚   โ”œโ”€ server.py              # MCP server entry point
โ”‚   โ”œโ”€ analyzers/             # ๐Ÿ” Code analysis
โ”‚   โ”‚   โ”œโ”€ __init__.py
โ”‚   โ”‚   โ””โ”€ code_analyzer.py   # Multi-tool static analysis
โ”‚   โ”œโ”€ generators/            # ๐Ÿงช Test generation
โ”‚   โ”‚   โ”œโ”€ __init__.py
โ”‚   โ”‚   โ””โ”€ test_generator.py  # AST-based test creation
โ”‚   โ””โ”€ executors/             # โ–ถ๏ธ Test execution
โ”‚       โ”œโ”€ __init__.py
โ”‚       โ””โ”€ test_executor.py   # Test running & formatting
โ”œโ”€ pyproject.toml             # Project configuration
โ”œโ”€ README.md                  # This file
โ”œโ”€ test_installation.py       # Installation validator
โ”œโ”€ examples.py                # Usage examples
โ””โ”€ requirements.txt           # Dependencies

๐Ÿš€ Quick Start

Step 1: Configure Your MCP Client

Edit ~/Library/Application Support/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "neurodev-mcp": {
      "command": "/absolute/path/to/neurodev-mcp/.venv/bin/python",
      "args": ["-m", "neurodev_mcp.server"]
    }
  }
}

๐Ÿ’ก Tip: Replace /absolute/path/to/neurodev-mcp with your actual path

Add to your MCP settings:

{
  "neurodev-mcp": {
    "command": "python",
    "args": ["-m", "neurodev_mcp.server"]
  }
}

Run the server directly:

# Using the module
python -m neurodev_mcp.server

# Or as a command (if installed)
neurodev-mcp

Step 2: Restart Your Client

Restart Claude Desktop or reload VSCode to load the server.

Step 3: Start Using! ๐ŸŽ‰

Try these commands with your AI assistant:

  • "Review this Python code for issues"
  • "Generate unit tests for this function"
  • "Run these tests with coverage"
  • "Format this code to PEP8 standards"

๐ŸŒ Transport Options

NeuroDev MCP supports multiple transport protocols for different use cases:

STDIO (Default) - Local CLI

Perfect for local development with MCP clients like Claude Desktop or Cline:

# Default STDIO transport
neurodev-mcp

# Or explicitly specify STDIO
neurodev-mcp --transport stdio

Configuration (Claude Desktop):

{
  "mcpServers": {
    "neurodev-mcp": {
      "command": "neurodev-mcp",
      "args": ["--transport", "stdio"]
    }
  }
}

SSE (Server-Sent Events) - Web Integration

For web-based integrations and HTTP streaming:

# Run with SSE on default port (8000)
neurodev-mcp --transport sse

# Custom host and port
neurodev-mcp --transport sse --host 0.0.0.0 --port 3000

Endpoints:

  • SSE Stream: http://localhost:8000/sse
  • Messages: http://localhost:8000/messages (POST)

Web Client Example:

const sse = new EventSource('http://localhost:8000/sse');

sse.onmessage = (event) => {
  const data = JSON.parse(event.data);
  console.log('Received:', data);
};

// Send message
fetch('http://localhost:8000/messages', {
  method: 'POST',
  headers: { 'Content-Type': 'application/json' },
  body: JSON.stringify({
    method: 'tools/call',
    params: {
      name: 'code_review',
      arguments: { code: 'def test(): pass', analyzers: ['pylint'] }
    }
  })
});

Transport Comparison

TransportUse CaseBest For
STDIOLocal CLI clientsClaude Desktop, Cline, local development
SSEWeb integrationsBrowser apps, webhooks, remote clients

๐Ÿ› ๏ธ Available Tools

1. code_review

๐Ÿ” Comprehensive code analysis with multiple static analysis tools

Input:

{
  "code": "def calculate(x):\n    return x * 2",
  "analyzers": ["pylint", "flake8", "mypy", "bandit", "radon", "ast"]
}

Output:

  • Detailed issue reports from each analyzer
  • Security vulnerabilities
  • Complexity metrics
  • Code quality scores
  • Line-by-line suggestions

2. generate_tests

๐Ÿงช Intelligent pytest test generation using AST analysis

Input:

{
  "code": "def add(a: int, b: int) -> int:\n    return a + b",
  "module_name": "calculator",
  "save": false
}

Output:

  • Complete pytest test suite
  • Multiple test cases (happy path, edge cases, exceptions)
  • Type validation tests
  • Ready-to-run test code

3. run_tests

โ–ถ๏ธ Execute pytest tests with coverage reporting

Input:

{
  "test_code": "def test_add():\n    assert add(1, 2) == 3",
  "source_code": "def add(a, b):\n    return a + b",
  "timeout": 30
}

Output:

  • Pass/fail status
  • Coverage percentage
  • Line coverage details
  • Execution time
  • Detailed stdout/stderr

4. format_code

๐ŸŽจ Auto-format Python code to PEP8 standards

Input:

{
  "code": "def   messy(  x,y  ):\n        return x+y",
  "line_length": 88
}

Output:

  • Beautifully formatted code
  • PEP8 compliant
  • Consistent style
  • Change detection

๐Ÿ’ก Usage Examples

Example 1: Complete Code Review Workflow

You: "Review this code for issues and security problems"

[paste code]

AI: [Uses code_review tool]
    โ†’ Finds 3 style issues
    โ†’ Detects 1 security vulnerability
    โ†’ Suggests complexity improvements
    
You: "Fix those issues and show me the updated code"

AI: [Provides fixed code with explanations]

Example 2: Test Generation & Execution

You: "Generate tests for this function and run them"

def divide(a: float, b: float) -> float:
    if b == 0:
        raise ValueError("Cannot divide by zero")
    return a / b

AI: [Uses generate_tests tool]
    โ†’ Creates 5 test cases
    โ†’ Includes edge cases (zero, negative numbers)
    โ†’ Tests exception handling
    
    [Uses run_tests tool]
    โ†’ 5/5 tests passing โœ“
    โ†’ 100% code coverage
    โ†’ All edge cases handled

Example 3: Code Formatting

You: "Format this messy code"

def   calculate(  x,y,z  ):
        result=x+y+z
        if result>10:
                    return   True
        return False

AI: [Uses format_code tool]
    โ†’ Applies black formatting
    โ†’ Returns clean, PEP8-compliant code

def calculate(x, y, z):
    result = x + y + z
    if result > 10:
        return True
    return False

๐Ÿ“‹ Requirements

PackageVersionPurpose
mcpโ‰ฅ0.9.0Model Context Protocol SDK
pylintโ‰ฅ3.0.0Code quality analysis
flake8โ‰ฅ7.0.0Style checking
mypyโ‰ฅ1.7.0Static type checking
banditโ‰ฅ1.7.5Security scanning
radonโ‰ฅ6.0.1Complexity metrics
blackโ‰ฅ23.12.0Code formatting
autopep8โ‰ฅ2.0.4PEP8 formatting
pytestโ‰ฅ7.4.3Testing framework
pytest-covโ‰ฅ4.1.0Coverage reporting
pytest-timeoutโ‰ฅ2.2.0Test timeouts

Python: 3.8 or higher


๐Ÿงช Development

Running Tests

# Run installation tests
python test_installation.py

# Run examples
python examples.py

# Run pytest (if you add tests)
pytest

Using as a Library

from neurodev_mcp import CodeAnalyzer, TestGenerator, TestExecutor
import asyncio

# Analyze code
code = "def hello(): print('world')"
result = asyncio.run(CodeAnalyzer.analyze_ast(code))

# Generate tests
tests = TestGenerator.generate_tests(code, "mymodule")

# Run tests
output = TestExecutor.run_tests(test_code, source_code)

โ“ Troubleshooting

  • โœ… Check that the path in config is absolute
  • โœ… Ensure the Python executable path is correct
  • โœ… Restart Claude Desktop or VSCode completely
  • โœ… Check server logs for errors
# Reinstall the package
pip install -e .

# Verify installation
python -c "from neurodev_mcp import CodeAnalyzer; print('โœ“ OK')"

# Run installation tests
python test_installation.py
  • โœ… Ensure Python 3.8+ is installed
  • โœ… Activate virtual environment: source .venv/bin/activate
  • โœ… Reinstall dependencies: pip install -e .
  • โœ… Run: python test_installation.py to diagnose
  • Some analyzers (pylint, mypy) can be slow on large files
  • Use specific analyzers: "analyzers": ["flake8", "ast"]
  • Increase timeout for large test suites
  • Consider caching results (future feature)

๐Ÿค Contributing

Contributions are welcome! Here's how:

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Make your changes
  4. Run tests: python test_installation.py
  5. Commit: git commit -m 'Add amazing feature'
  6. Push: git push origin feature/amazing-feature
  7. Open a Pull Request

Future Enhancements

  • Additional analyzers (pydocstyle, vulture)
  • Result caching for performance
  • Configuration file support
  • Web dashboard
  • Multi-language support
  • CI/CD pipeline

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.


๐Ÿ™ Acknowledgments


๐Ÿ“ž Support


Ready to supercharge your Python development! ๐Ÿš€

Made with โค๏ธ by the NeuroDev Team

โญ Star on GitHub โ€ข ๐Ÿ› Report Bug โ€ข โœจ Request Feature

Related Servers