Railagent
Provides structured workflows and tools for AI agents working with software development projects, with a specialized focus on Rails applications.
Railagent - MCP Server for AI Agent Workflows
A Model Context Protocol (MCP) server that provides structured workflows and tools for AI agents working with software development projects, with specialized focus on Rails applications.
What This Does
Railagent provides AI agents with a comprehensive workflow system for software development. It guides agents through the entire development lifecycle from requirements gathering to implementation, ensuring consistent and high-quality outcomes.
How It Works
For New Projects
- Functional Requirements: Use the functional requirements tool to collect necessary information about the project (purpose, users, capabilities, workflows, context, edge cases)
- Product Requirements Document (PRD): Generate a complete PRD from the functional requirements, breaking down the project into features and user stories
- Feature Requirements Document (FRD): For each feature, create a detailed FRD that breaks large features into individual PR-sized units
- Task Design Document (TDD): Transform the FRD into an implementation plan with specific subtasks, where each subtask corresponds to a commit
For Existing/Complex Systems
- Skip directly to step 4 (TDD) above when you have a clear understanding of what needs to be built
Implementation Workflow
- Initialize Tasks: Call the initialize tool to set up subtasks based on your TDD implementation plan (stored in
.cursor/scratch/tasks/) - Execute Tasks: Use the execute tool to work on each task individually. Each task represents exactly one commit, and the agent waits for review before committing
- Track Progress: Progress is maintained in
.cursor/scratch/todo.mdwith notes and status updates
All documents and tasks are automatically stored in the .cursor/scratch/ folder for easy access and organization.
Available Tools
Documentation Tools
- build_functional_requirements: Collects comprehensive project requirements
- build_prd: Generates Product Requirements Documents from functional requirements
- build_frd: Creates Feature Requirements Documents for specific features
- build_tdd: Breaks down features into detailed implementation plans with commit-level subtasks
- build_architecture: Generates comprehensive architecture documentation
Workflow Tools
- initialize_task: Sets up implementation subtasks from TDD plans
- execute_task: Executes individual tasks with review checkpoints
Setup Instructions
1. Configure MCP Client
Add to your mcp.json file:
{
"mcpServers": {
"Railagent": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"cestbalez/railagent:latest"
]
}
}
}
2. Restart Your MCP Client
Restart your MCP client to load the new server.
Note: The Docker image will be automatically pulled from DockerHub on first use. No manual installation or repository cloning required!
Project Structure
railagent/
├── app.rb # Main application entry point
├── lib/ # Tool implementations
│ ├── docs/ # Documentation tools
│ └── workflow/ # Workflow management tools
├── prompts/ # Workflow prompts and templates
│ ├── docs/ # Documentation workflow prompts
│ └── workflow/ # Implementation workflow templates
├── Dockerfile # Docker configuration
├── Gemfile # Ruby dependencies
└── README.md # This file
Development
Using the Pre-built Image
The easiest way to use Railagent is with the pre-built Docker image:
docker run -i --rm cestbalez/railagent:latest
Local Development
If you want to contribute or modify the code:
git clone <your-repo-url>
cd railagent
bundle install
ruby app.rb
Building Your Own Image
git clone <your-repo-url>
cd railagent
docker build -t railagent .
Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add some amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
License
This project is licensed under the terms specified in the LICENSE file.
Related Servers
Scout Monitoring MCP
sponsorPut performance and error data directly in the hands of your AI assistant.
Alpha Vantage MCP Server
sponsorAccess financial market data: realtime & historical stock, ETF, options, forex, crypto, commodities, fundamentals, technical indicators, & more
MCP Crypto Wallet EVM
Perform EVM crypto wallet operations using ethers.js v5. Supports a private key environment variable for wallet operations.
HeyBeauty
Perform virtual try-ons using the HeyBeauty API.
Sherlog MCP Server
A persistent IPython workspace for data analysis, log processing, and multi-agent collaboration.
Agent Engineering Bootcamp MCP
A server providing setup guidance for students learning agent development, with support for both Python and TypeScript.
Guardian MCP
Engineering discipline and persistent memory for AI coding assistants
Remote MCP Server (Authless)
An example of a remote MCP server deployable on Cloudflare Workers without authentication.
React MCP
An MCP server for integrating AI with React applications.
vHAL MCP Server
Search Android Vehicle Hardware Abstraction Layer (vHAL) documentation and source code from a local repository clone.
My MCP SSE Servers
A project for managing multiple MCP servers using Docker Compose, with each server as a submodule.
Moondream
A vision language model for image analysis, including captioning, VQA, and object detection.