Prompt MCP Server for Amazon Q
An MCP server for the Amazon Q Developer CLI to manage local prompt files.
Prompt MCP Server for Amazon Q
A single-file Model Context Protocol (MCP) server for Amazon Q Developer CLI that manages prompt files (*.md) from local directories.
Features
- š Real-time File Monitoring: Automatically detects file changes and updates prompt list
- š¢ MCP Notifications: Sends notifications to Amazon Q CLI for automatic refresh
- š Prompt Discovery: Lists all
*.mdfiles from configured directories - š Default Directory:
~/.aws/amazonq/prompts(created automatically) - šÆ Custom Directories: Override with
PROMPTS_PATHenvironment variable (PATH-like format) - š§ Variable Substitution: Supports
{variable}placeholders in prompts - š Configurable Logging: Production-safe defaults with comprehensive debug mode
- š Cross-Platform: Works on Unix/Linux/macOS (Windows compatible)
- ā” Error Handling: Comprehensive error handling and logging
- š¦ No Dependencies: Pure Python 3.8+ implementation
Installation & Usage
Quick Start with uvx (Recommended)
# Install and run directly (after publishing to PyPI)
uvx prompt-mcp-server
# Or install from local build
pyproject-build
uvx --from ./dist/prompt_mcp_server-2.0.3-py3-none-any.whl prompt-mcp-server
Direct Usage
# Run the server directly
python3 mcp_server/prompt_mcp_server.py
# With custom prompt directories
PROMPTS_PATH="./my-prompts:~/.aws/amazonq/prompts" python3 mcp_server/prompt_mcp_server.py
Amazon Q Integration
# The workspace is configured to use uvx with the built package
q mcp list # Verify configuration (should show: prompt-server uvx)
q chat # Start Amazon Q CLI
/prompts # List available prompts
@debug_code # Use a prompt
Configuration files:
.amazonq/mcp.json- Uses local development pathtests/.amazonq/mcp.json- Uses local built packagetests/.amazonq/mcp-published.json- For published package (copy tomcp.jsonafter publishing)
Building and Testing
# Build package
pyproject-build
# Test with uvx
echo '{"jsonrpc": "2.0", "id": 1, "method": "initialize"}' | uvx --from ./dist/prompt_mcp_server-2.0.0-py3-none-any.whl prompt-mcp-server
Configuration
Environment Variables
PROMPTS_PATH: Colon-separated list of directories (Unix) or semicolon-separated (Windows)- Default:
~/.aws/amazonq/prompts
Workspace Configuration
The .amazonq/mcp.json file configures Amazon Q to use this server:
Development Configuration (Local)
{
"mcpServers": {
"prompt-server": {
"command": "python3",
"args": ["mcp_server/prompt_mcp_server.py"],
"timeout": 10000
}
}
}
Production Configuration (PyPI)
{
"mcpServers": {
"prompt-server": {
"command": "uvx",
"args": ["prompt-mcp-server@latest"],
"disabled": false,
"autoApprove": []
}
}
}
Environment Variables
PROMPTS_PATH
- Purpose: Specify custom directories to search for prompt files
- Format: Colon-separated list of directories (Unix/Linux/macOS) or semicolon-separated (Windows)
- Default:
~/.aws/amazonq/prompts - Example:
export PROMPTS_PATH="/path/to/prompts1:/path/to/prompts2"
MCP_LOG_LEVEL
- Purpose: Set the logging level for the MCP server
- Values:
DEBUG,INFO,WARNING,ERROR,CRITICAL - Default:
WARNING(production level - only warnings and errors) - Example:
export MCP_LOG_LEVEL=INFO
MCP_DEBUG_LOGGING
- Purpose: Enable comprehensive debug logging with detailed request/response tracing
- Values:
1,true,yes,on(case-insensitive) - Default: Disabled
- When enabled:
- Forces
INFOlevel logging regardless ofMCP_LOG_LEVEL - Creates debug log file for easy monitoring
- Logs all MCP requests and responses with full JSON details
- Logs file monitoring activity and cache operations
- Color-coded log messages with emojis for easy identification
- Forces
- Example:
export MCP_DEBUG_LOGGING=1 # Then monitor logs with: tail -f /tmp/mcp_server_debug.log
MCP_LOG_FILE
- Purpose: Set custom path for the debug log file
- Default:
/tmp/mcp_server_debug.log - Only used when:
MCP_DEBUG_LOGGINGis enabled - Example:
export MCP_DEBUG_LOGGING=1 export MCP_LOG_FILE=/path/to/custom/mcp_debug.log # Then monitor logs with: tail -f /path/to/custom/mcp_debug.log
Debug Logging Usage
To enable debug logging for troubleshooting:
# Enable debug logging with default log file
export MCP_DEBUG_LOGGING=1
# Or enable with custom log file location
export MCP_DEBUG_LOGGING=1
export MCP_LOG_FILE=/path/to/custom/debug.log
# Start Amazon Q CLI
q chat
# In another terminal, monitor detailed logs
tail -f /tmp/mcp_server_debug.log
# Or if using custom log file:
tail -f /path/to/custom/debug.log
# Test file changes
echo "# Test" > ~/.aws/amazonq/prompts/test.md
rm ~/.aws/amazonq/prompts/test.md
The debug logs will show:
- š„ Raw requests received from Amazon Q CLI
- šµ Parsed incoming requests with details
- š¢ Outgoing responses with full content
- š¤ Raw responses sent to Amazon Q CLI
- š¢ MCP notifications sent (e.g., prompts list changed)
- File monitoring activity and cache operations
Testing
The project includes comprehensive unit and functional tests:
Run All Tests
# Run both unit and functional tests
python3 tests/run_all_tests.py
# Run only unit tests
python3 tests/run_all_tests.py --unit-only
# Run only functional tests
python3 tests/run_all_tests.py --functional-only
Individual Test Suites
# Unit tests (31 tests)
python3 tests/test_prompt_mcp_server.py
# Functional tests (14 tests)
python3 tests/test_functional.py
# UVX integration tests (8 tests)
python3 tests/test_uvx_integration.py
Test Results
- Current Status: ā All 53 tests passing (100% success rate)
- Detailed Results: See
tests/results/directory for comprehensive reports - Performance: Complete test suite runs in ~10.5 seconds
Test Coverage
- Unit Tests: 31 tests covering all server components
- Functional Tests: 14 end-to-end integration tests
- UVX Integration: 8 tests for package execution scenarios
- Total Coverage: 53 comprehensive tests
Creating Prompts
Simple Prompt
Create ~/.aws/amazonq/prompts/debug_code.md:
# Debug Code Issues
Help me debug code by identifying issues and suggesting fixes.
Parameterized Prompt
Create ~/.aws/amazonq/prompts/create_function.md:
# Create {language} Function
Create a {language} function named {function_name} that {description}.
Requirements:
- Follow {language} best practices
- Include error handling
- Add comprehensive tests
Usage Examples
List Available Prompts
echo '{"jsonrpc": "2.0", "id": 1, "method": "prompts/list"}' | python3 mcp_server/prompt_mcp_server.py
Get a Prompt with Variables
echo '{"jsonrpc": "2.0", "id": 2, "method": "prompts/get", "params": {"name": "create_function", "arguments": {"language": "Python", "function_name": "calculate", "description": "adds two numbers"}}}' | python3 mcp_server/prompt_mcp_server.py
Requirements
- Python 3.6+
- No external dependencies
- Cross-platform support
Error Handling
The server includes comprehensive error handling:
- File permission validation
- File size limits (1MB max)
- Unicode encoding support (UTF-8 with latin-1 fallback)
- Directory access validation
- Graceful fallback to default directories
- Detailed logging to stderr
Testing
All core features have been tested:
- ā MCP protocol compliance (initialize, prompts/list, prompts/get)
- ā Prompt discovery and variable extraction
- ā PROMPTS_PATH environment variable support
- ā Cross-platform path handling
- ā Error handling and edge cases
- ā Amazon Q CLI integration
Project Structure
mcp-prompts-local/
āāā mcp_server/ # Main package
ā āāā __init__.py # Package initialization
ā āāā prompt_mcp_server.py # MCP server implementation
āāā tools/ # Development tools
ā āāā publish.py # Automated publishing script
ā āāā README.md # Tools documentation
āāā tests/ # Test suite
ā āāā test_prompt_mcp_server.py # Unit tests (31 tests)
ā āāā test_functional.py # Functional tests (14 tests)
ā āāā test_uvx_integration.py # UVX integration tests (8 tests)
ā āāā results/ # Test execution results
ā ā āāā FULL_TEST_RESULTS.md # Initial test results
ā ā āāā FINAL_TEST_RESULTS.md # Final test results (100% success)
ā ā āāā README.md # Test results documentation
ā āāā .amazonq/ # Test configurations
āāā .amazonq/ # Workspace configuration
ā āāā mcp.json # Development MCP config
āāā dist/ # Built packages
āāā pyproject.toml # Package configuration
āāā README.md # This file
āāā LICENSE # MIT license
Architecture
This is a single-file implementation that:
- Reads JSON-RPC requests from stdin
- Scans configured directories for
*.mdfiles - Extracts variables using regex (
{variable}pattern) - Substitutes variables in prompt content
- Returns responses via stdout
- Logs to stderr
Version History
For detailed version information, release notes, and changelog, see CHANGELOG.md.
For more information about the Model Context Protocol, see the MCP specification.
Related Servers
Scout Monitoring MCP
sponsorPut performance and error data directly in the hands of your AI assistant.
Alpha Vantage MCP Server
sponsorAccess financial market data: realtime & historical stock, ETF, options, forex, crypto, commodities, fundamentals, technical indicators, & more
Neo N3 MCP Server
Integrates with the Neo N3 blockchain for wallet management, asset transfers, contract interactions, and blockchain queries.
Pickapicon
Quickly retrieve SVGs using the Iconify API, with no external data files required.
Azure DevOps MCP Server for Cursor
An MCP server for Azure DevOps with tools for project management, work items, pull requests, builds, tests, and more.
Jinni
A tool to provide Large Language Models with project context by intelligently filtering and concatenating relevant files.
MCPAgent
An intelligent agent framework based on MCP, supporting multiple large language models and tool integrations for testing single-agent effectiveness.
CodeRabbit
Interact with CodeRabbit AI reviews on GitHub pull requests.
Context 7
Up-to-date Docs For Any Cursor Prompt
Gemsuite
The ultimate open-source server for advanced Gemini API interaction with MCP, intelligently selects models.
Postman Agent Generator
An MCP server generated by Postman Agent Generator for automated API tools.
Image Tools MCP
Retrieve image dimensions and compress images from URLs or local files using Tinify and Figma APIs.