Find BGM
Finds background music for YouTube shorts by analyzing script content and recommending tracks from YouTube Music.
Find BGM MCP Server
An MCP server that helps YouTube content creators find perfect background music for their shorts by analyzing script content and recommending tracks from YouTube Music.
Features
- Script Analysis: Analyzes mood, theme, pacing, and sentiment from video scripts
- Smart Recommendations: Uses YouTube Music API to find suitable background tracks
- Duration Filtering: Ensures recommendations fit your short video length
- Confidence Scoring: Ranks recommendations by relevance to your content
Architecture
The server follows clean architecture principles with modular design:
find_bgm/
├── server.py # Main server entry point
├── config.py # Configuration management
├── models.py # Data models and types
├── script_analyzer.py # Script analysis logic
├── music_service.py # YouTube Music API integration
├── tools.py # MCP tool definitions
└── test_server.py # Test suite
Installation
- Install dependencies:
pip install -r requirements.txt
- (Optional) Set up YouTube Music API access:
- Follow the ytmusicapi setup guide
- Create
oauth.jsonfile in the project directory - Without this, the server will use mock recommendations
Usage
The server provides one main tool: recommend_background_music
Parameters
script(required): Your YouTube short script/contentduration(required): Length of your short in seconds (15-60)genre_preference(optional): "pop", "electronic", "chill", "rock", "hip-hop", "classical", "ambient", "any"mood_preference(optional): "upbeat", "calm", "dramatic", "energetic", "relaxed", "motivational", "any"content_type(optional): "comedy", "educational", "lifestyle", "fitness", "cooking", "travel", "tech", "other"
Example Response
{
"analysis": {
"detected_mood": "motivational",
"detected_theme": "fitness",
"pacing": "medium",
"sentiment_score": 0.4,
"keywords": ["workout", "energy", "strong"]
},
"recommendations": [
{
"title": "Uplifting Corporate Background",
"artist": "Audio Library",
"youtube_music_id": "abc123",
"confidence_score": 0.85,
"reason": "Strong match for motivational mood and fitness content",
"duration": 45,
"loop_suitable": true
}
]
}
Configuration
Customize behavior with environment variables:
# Logging level
export BGM_LOG_LEVEL=DEBUG
# OAuth file location
export BGM_OAUTH_FILE=my_oauth.json
# Search and recommendation limits
export BGM_MAX_DURATION=240
export BGM_SEARCH_LIMIT=15
YouTube Music API Setup
Method 1: Browser Authentication (Recommended)
- Install ytmusicapi:
pip install ytmusicapi - Run:
ytmusicapi browser - Follow prompts to paste browser headers from YouTube Music
- Save as
oauth.json
Method 2: OAuth Setup
- Create Google Cloud project
- Enable YouTube Data API v3
- Create OAuth credentials
- Run:
ytmusicapi oauth - Complete authentication flow
Without the API, the server works with mock data for testing.
Running the Server
python server.py
The server runs on stdio and can be integrated with any MCP-compatible client.
Testing
# Test all components
python test_server.py
# Test with virtual environment
source venv/bin/activate
python test_server.py
Claude Desktop Integration
Add to your claude_desktop_config.json:
{
"mcpServers": {
"find-bgm": {
"command": "/path/to/find_bgm/venv/bin/python",
"args": ["/path/to/find_bgm/server.py"]
}
}
}
Components
ScriptAnalyzer
Analyzes script content to detect mood, theme, and pacing using natural language processing.
YouTubeMusicService & MusicRecommendationService
Handles YouTube Music API integration and generates scored recommendations.
BGMTools
MCP tool interface that orchestrates script analysis and music recommendations.
Configuration Management
Environment-based configuration with sensible defaults and type safety.
Example Usage
from models import RecommendationRequest
from script_analyzer import ScriptAnalyzer
from music_service import MusicRecommendationService
# Analyze script
analyzer = ScriptAnalyzer()
analysis = analyzer.analyze_script("Your video script here")
# Get recommendations
service = MusicRecommendationService(music_service, config)
recommendations = await service.get_recommendations(
analysis, "electronic", "upbeat", 30
)
The server provides intelligent music recommendations to help creators find the perfect soundtrack for their content! 🎵
Related Servers
Rememberizer MCP Server for Common Knowledge
Access personal and team knowledge repositories, including documents and Slack discussions.
Bilibili API
Search for videos, users, and retrieve danmaku from the Bilibili API.
Entscheidsuche
Search Swiss legal decisions using the entscheidsuche.ch API.
Hacker News
Search for stories, get user information, and interact with Hacker News.
Grok Search
Comprehensive web, news, and social media search and analysis using xAI's Grok API.
IMDb MCP Server
Provides movie and TV show information using the IMDb API service.
Naver Directions
Provides directions, place search, and geocoding features using the Naver Maps API.
OrdiscanMCP v1
MCP server for interacting with the Ordiscan API to query Bitcoin ordinals and inscriptions. Requires an Ordiscan API key.
Semantic Scholar
Search for academic papers, authors, and citations using the Semantic Scholar API.
Gemini MCP
Integrate search grounded Gemini output into your workflow.