Interact with VisiData, a terminal spreadsheet multitool for discovering and arranging tabular data in various formats like CSV, JSON, and Excel.
A Model Context Protocol (MCP) server that provides access to VisiData functionality with enhanced data visualization and analysis capabilities.
create_correlation_heatmap
- Generate correlation matrices with beautiful heatmap visualizationscreate_distribution_plots
- Create statistical distribution plots (histogram, box, violin, kde)create_graph
- Custom graphs (scatter, line, bar, histogram) with categorical grouping supportparse_skills_column
- Parse comma-separated skills into individual skills with one-hot encodinganalyze_skills_by_location
- Comprehensive skills frequency and distribution analysis by locationcreate_skills_location_heatmap
- Visual heatmap showing skills distribution across locationsanalyze_salary_by_location_and_skills
- Advanced salary statistics by location and skills combinationload_data
- Load and inspect data files from various formatsget_data_sample
- Get a preview of your data with configurable row countanalyze_data
- Perform comprehensive data analysis with column types and statisticsconvert_data
- Convert between different data formats (CSV ↔ JSON ↔ Excel, etc.)filter_data
- Filter data based on conditions (equals, contains, greater/less than)get_column_stats
- Get detailed statistics for specific columnssort_data
- Sort data by any column in ascending or descending ordernpm install -g @moeloubani/visidata-mcp@beta
Prerequisites: Python 3.10+ (the installer will check and guide you if needed)
pip install visidata-mcp
git clone https://github.com/moeloubani/visidata-mcp.git
cd visidata-mcp
pip install -e .
Add to ~/Library/Application Support/Claude/claude_desktop_config.json
:
{
"mcpServers": {
"visidata": {
"command": "visidata-mcp"
}
}
}
Create .cursor/mcp.json
in your project:
{
"mcpServers": {
"visidata": {
"command": "visidata-mcp"
}
}
}
Restart your AI application after configuration changes.
# Create a correlation heatmap
create_correlation_heatmap("sales_data.csv", "correlation_heatmap.png")
# Generate distribution plots for all numeric columns
create_distribution_plots("sales_data.csv", "distributions.png", plot_type="histogram")
# Create a scatter plot with categorical grouping
create_graph("sales_data.csv", "price", "sales", "scatter_plot.png",
graph_type="scatter", category_column="region")
# Parse comma-separated skills into individual columns
parse_skills_column("jobs.csv", "required_skills", "skills_parsed.csv")
# Analyze skills distribution by location
analyze_skills_by_location("jobs.csv", "required_skills", "location", "skills_analysis.json")
# Create skills-location heatmap
create_skills_location_heatmap("jobs.csv", "required_skills", "location", "skills_heatmap.png")
# Comprehensive salary analysis
analyze_salary_by_location_and_skills("jobs.csv", "salary", "location", "required_skills", "salary_analysis.xlsx")
# Load and analyze data
load_data("data.csv")
get_data_sample("data.csv", 10)
analyze_data("data.csv")
# Transform data
convert_data("data.csv", "data.json")
filter_data("data.csv", "revenue", "greater_than", "1000", "high_revenue.csv")
sort_data("data.csv", "date", False, "sorted_data.csv")
"No module named 'matplotlib'"
/path/to/visidata-mcp/venv/bin/visidata-mcp
"0 tools available"
Test your installation:
# Check if server starts
visidata-mcp
# Test with Python
python -c "from visidata_mcp.server import main; print('✅ Server ready')"
# Install for development
git clone https://github.com/moeloubani/visidata-mcp.git
cd visidata-mcp
pip install -e .
# Build package
python -m build
# Run tests
python -c "from visidata_mcp.server import main; print('✅ Ready')"
MIT License - see LICENSE for details.
Creates shortened URLs using the x.gd service.
Breaks down complex tasks into manageable pieces and stores them in structured JSON.
Interact with Apple Notes using natural language on macOS.
Interact with Google Calendar APIs to manage events and calendars.
Manage events, reporting, and analytics on Eventbrite.
Fetch and summarize YouTube videos by extracting their titles, descriptions, and transcripts.
A simple note storage system with a custom note:// URI scheme, allowing users to add and summarize notes.
A server for managing local prompt files, allowing AI models to create, retrieve, update, and delete them.
An MCP server for integrating with the Claude Desktop application on macOS. Requires the Claude Desktop app to be installed and configured.
An MCP server for intelligent text summarization, configurable with various AI providers.