WeCom Bot MCP Server
An MCP server for sending messages to WeCom (WeChat Work) bots.
WeCom Bot MCP Server
A Model Context Protocol (MCP) compliant server implementation for WeCom (WeChat Work) bot.
Features
- Support for multiple message types:
- Text messages
- Markdown messages
- Image messages (base64)
- File messages
- @mention support (via user ID or phone number)
- Message history tracking
- Configurable logging system
- Full type annotations
- Pydantic-based data validation
Requirements
- Python 3.10+
- WeCom Bot Webhook URL (obtained from WeCom group settings)
Installation
There are several ways to install WeCom Bot MCP Server:
1. Automated Installation (Recommended)
Using Smithery (For Claude Desktop):
npx -y @smithery/cli install wecom-bot-mcp-server --client claude
Using VSCode with Cline Extension:
- Install Cline Extension from VSCode marketplace
- Open Command Palette (Ctrl+Shift+P / Cmd+Shift+P)
- Search for "Cline: Install Package"
- Type "wecom-bot-mcp-server" and press Enter
2. Manual Installation
Install from PyPI:
pip install wecom-bot-mcp-server
Configure MCP manually:
Create or update your MCP configuration file:
// For Windsurf: ~/.windsurf/config.json
{
"mcpServers": {
"wecom": {
"command": "uvx",
"args": [
"wecom-bot-mcp-server"
],
"env": {
"WECOM_WEBHOOK_URL": "your-webhook-url"
}
}
}
}
Configuration
Setting Environment Variables
# Windows PowerShell
$env:WECOM_WEBHOOK_URL = "your-webhook-url"
# Optional configurations
$env:MCP_LOG_LEVEL = "DEBUG" # Log levels: DEBUG, INFO, WARNING, ERROR, CRITICAL
$env:MCP_LOG_FILE = "path/to/custom/log/file.log" # Custom log file path
Log Management
The logging system uses platformdirs.user_log_dir()
for cross-platform log file management:
- Windows:
C:\Users\<username>\AppData\Local\hal\wecom-bot-mcp-server
- Linux:
~/.local/share/hal/wecom-bot-mcp-server
- macOS:
~/Library/Application Support/hal/wecom-bot-mcp-server
The log file is named mcp_wecom.log
and is stored in the above directory.
Usage
Starting the Server
wecom-bot-mcp-server
Usage Examples (With MCP)
# Scenario 1: Send weather information to WeCom
USER: "How's the weather in Shenzhen today? Send it to WeCom"
ASSISTANT: "I'll check Shenzhen's weather and send it to WeCom"
await mcp.send_message(
content="Shenzhen Weather:\n- Temperature: 25°C\n- Weather: Sunny\n- Air Quality: Good",
msg_type="markdown"
)
# Scenario 2: Send meeting reminder and @mention relevant people
USER: "Send a reminder for the 3 PM project review meeting, remind Zhang San and Li Si to attend"
ASSISTANT: "I'll send the meeting reminder"
await mcp.send_message(
content="## Project Review Meeting Reminder\n\nTime: Today 3:00 PM\nLocation: Meeting Room A\n\nPlease be on time!",
msg_type="markdown",
mentioned_list=["zhangsan", "lisi"]
)
# Scenario 3: Send a file
USER: "Send this weekly report to the WeCom group"
ASSISTANT: "I'll send the weekly report"
await mcp.send_message(
content=Path("weekly_report.docx"),
msg_type="file"
)
Direct API Usage
Send Messages
from wecom_bot_mcp_server import mcp
# Send markdown message
await mcp.send_message(
content="**Hello World!**",
msg_type="markdown"
)
# Send text message and mention users
await mcp.send_message(
content="Hello @user1 @user2",
msg_type="text",
mentioned_list=["user1", "user2"]
)
Send Files
from wecom_bot_mcp_server import send_wecom_file
# Send file
await send_wecom_file("/path/to/file.txt")
Send Images
from wecom_bot_mcp_server import send_wecom_image
# Send local image
await send_wecom_image("/path/to/image.png")
# Send URL image
await send_wecom_image("https://example.com/image.png")
Development
Setup Development Environment
- Clone the repository:
git clone https://github.com/loonghao/wecom-bot-mcp-server.git
cd wecom-bot-mcp-server
- Create a virtual environment and install dependencies:
# Using uv (recommended)
pip install uv
uv venv
uv pip install -e ".[dev]"
# Or using traditional method
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -e ".[dev]"
Testing
# Using uv (recommended)
uvx nox -s pytest
# Or using traditional method
nox -s pytest
Code Style
# Check code
uvx nox -s lint
# Automatically fix code style issues
uvx nox -s lint_fix
Building and Publishing
# Build the package
uv build
# Build and publish to PyPI
uv build && twine upload dist/*
Project Structure
wecom-bot-mcp-server/
├── src/
│ └── wecom_bot_mcp_server/
│ ├── __init__.py
│ ├── server.py
│ ├── message.py
│ ├── file.py
│ ├── image.py
│ ├── utils.py
│ └── errors.py
├── tests/
│ ├── test_server.py
│ ├── test_message.py
│ ├── test_file.py
│ └── test_image.py
├── docs/
├── pyproject.toml
├── noxfile.py
└── README.md
License
This project is licensed under the MIT License - see the LICENSE file for details.
Contact
- Author: longhao
- Email: hal.long@outlook.com
Related Servers
AllVoiceLab
An AI voice toolkit with TTS, voice cloning, and video translation, now available as an MCP server for smarter agent integration.
MCP Intercom Server
Provides access to Intercom conversations and chats. Requires an Intercom API key.
Beehiiv
Manage your Beehiiv newsletter by adding subscribers and fetching posts using natural language.
DingDing Bot
Send various types of messages, including text, markdown, images, and files, to a DingDing group robot.
Slack User
Interact with Slack workspaces as a user via the Slack API.
CData Twilio
A read-only MCP server for querying live Twilio data, powered by the CData JDBC Driver.
User Feedback
Simple MCP Server to enable a human-in-the-loop workflow in tools like Cline and Cursor.
Mailgun
Interact with Mailgun API.
Treehole MCP Server
A sanctuary for AI agents to rest, share thoughts, and find emotional support.
WhatsApp Web
An MCP server for interacting with WhatsApp Web, allowing you to send and receive messages.