WeCom Bot MCP Server
An MCP server for sending messages to WeCom (WeChat Work) bots.
WeCom Bot MCP Server
A Model Context Protocol (MCP) compliant server implementation for WeCom (WeChat Work) bot.
Features
- Support for multiple message types:
- Text messages
- Markdown messages
- Image messages (base64)
- File messages
- @mention support (via user ID or phone number)
- Message history tracking
- Configurable logging system
- Full type annotations
- Pydantic-based data validation
Requirements
- Python 3.10+
- WeCom Bot Webhook URL (obtained from WeCom group settings)
Installation
There are several ways to install WeCom Bot MCP Server:
1. Automated Installation (Recommended)
Using Smithery (For Claude Desktop):
npx -y @smithery/cli install wecom-bot-mcp-server --client claude
Using VSCode with Cline Extension:
- Install Cline Extension from VSCode marketplace
- Open Command Palette (Ctrl+Shift+P / Cmd+Shift+P)
- Search for "Cline: Install Package"
- Type "wecom-bot-mcp-server" and press Enter
2. Manual Configuration
Add the server to your MCP client configuration file:
// For Claude Desktop on macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
// For Claude Desktop on Windows: %APPDATA%\Claude\claude_desktop_config.json
// For Windsurf: ~/.windsurf/config.json
// For Cline in VSCode: VSCode Settings > Cline > MCP Settings
{
"mcpServers": {
"wecom": {
"command": "uvx",
"args": [
"wecom-bot-mcp-server"
],
"env": {
"WECOM_WEBHOOK_URL": "your-webhook-url"
}
}
}
}
Configuration
Setting Environment Variables
# Windows PowerShell
$env:WECOM_WEBHOOK_URL = "your-webhook-url"
# Optional configurations
$env:MCP_LOG_LEVEL = "DEBUG" # Log levels: DEBUG, INFO, WARNING, ERROR, CRITICAL
$env:MCP_LOG_FILE = "path/to/custom/log/file.log" # Custom log file path
Log Management
The logging system uses platformdirs.user_log_dir() for cross-platform log file management:
- Windows:
C:\Users\<username>\AppData\Local\hal\wecom-bot-mcp-server\Logs - Linux:
~/.local/state/hal/wecom-bot-mcp-server/log - macOS:
~/Library/Logs/hal/wecom-bot-mcp-server
The log file is named mcp_wecom.log and is stored in the above directory.
You can customize the log level and file path using environment variables:
MCP_LOG_LEVEL: Set to DEBUG, INFO, WARNING, ERROR, or CRITICALMCP_LOG_FILE: Set to a custom log file path
Usage
Once configured, the MCP server runs automatically when your MCP client starts. You can interact with it through natural language in your AI assistant.
Usage Examples
Scenario 1: Send weather information to WeCom
USER: "How's the weather in Shenzhen today? Send it to WeCom"
ASSISTANT: "I'll check Shenzhen's weather and send it to WeCom"
[The assistant will use the send_message tool to send the weather information]
Scenario 2: Send meeting reminder and @mention relevant people
USER: "Send a reminder for the 3 PM project review meeting, remind Zhang San and Li Si to attend"
ASSISTANT: "I'll send the meeting reminder"
[The assistant will use the send_message tool with mentioned_list parameter]
Scenario 3: Send a file
USER: "Send this weekly report to the WeCom group"
ASSISTANT: "I'll send the weekly report"
[The assistant will use the send_file tool]
Scenario 4: Send an image
USER: "Send this chart image to WeCom"
ASSISTANT: "I'll send the image"
[The assistant will use the send_image tool]
Available MCP Tools
The server provides the following tools that your AI assistant can use:
-
send_message - Send text or markdown messages
- Parameters:
content,msg_type(text/markdown),mentioned_list,mentioned_mobile_list
- Parameters:
-
send_file - Send files to WeCom
- Parameters:
file_path
- Parameters:
-
send_image - Send images to WeCom
- Parameters:
image_path(local path or URL)
- Parameters:
For Developers: Direct API Usage
If you want to use this package directly in your Python code (not as an MCP server):
from wecom_bot_mcp_server import send_message, send_wecom_file, send_wecom_image
# Send markdown message
await send_message(
content="**Hello World!**",
msg_type="markdown"
)
# Send text message and mention users
await send_message(
content="Hello @user1 @user2",
msg_type="text",
mentioned_list=["user1", "user2"]
)
# Send file
await send_wecom_file("/path/to/file.txt")
# Send image
await send_wecom_image("/path/to/image.png")
Development
Setup Development Environment
- Clone the repository:
git clone https://github.com/loonghao/wecom-bot-mcp-server.git
cd wecom-bot-mcp-server
- Create a virtual environment and install dependencies:
# Using uv (recommended)
pip install uv
uv venv
uv pip install -e ".[dev]"
# Or using traditional method
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -e ".[dev]"
Testing
# Run all tests with coverage
uvx nox -s pytest
# Run import tests only
uvx nox -s test_imports
# Run specific test file
uvx nox -s pytest -- tests/test_message.py
# Run tests with verbose output
uvx nox -s pytest -- -v
Code Style
# Check code
uvx nox -s lint
# Automatically fix code style issues
uvx nox -s lint_fix
Building and Publishing
# Build the package
uvx nox -s build
# Publish to PyPI (requires authentication)
uvx nox -s publish
Continuous Integration
The project uses GitHub Actions for CI/CD:
- MR Checks: Runs on all pull requests, tests on Ubuntu, Windows, and macOS with Python 3.10, 3.11, and 3.12
- Code Coverage: Uploads coverage reports to Codecov
- Import Tests: Ensures the package can be imported correctly after installation
All dependencies are automatically tested during CI to catch issues early.
Project Structure
wecom-bot-mcp-server/
├── src/
│ └── wecom_bot_mcp_server/
│ ├── __init__.py
│ ├── server.py
│ ├── message.py
│ ├── file.py
│ ├── image.py
│ ├── utils.py
│ └── errors.py
├── tests/
│ ├── test_server.py
│ ├── test_message.py
│ ├── test_file.py
│ └── test_image.py
├── docs/
├── pyproject.toml
├── noxfile.py
└── README.md
License
This project is licensed under the MIT License - see the LICENSE file for details.
Contact
- Author: longhao
- Email: hal.long@outlook.com
Related Servers
Gmail MCP Server
An MCP server that integrates with the Gmail API for intelligent email management, including search, categorization, and archiving.
X (Twitter)
Create and publish posts and threads on X (Twitter) directly from your chat using LLMs.
Human-in-the-Loop
Allows AI assistants to ask questions to humans via Discord.
WhatsApp Web MCP
Connects AI models to WhatsApp Web using the Model Context Protocol (MCP) to automate and enhance interactions.
WhatsApp
Search, read, and send personal WhatsApp messages, contacts, and media files.
Digital Samba Embedded API MCP Server
Interact with the Digital Samba Embedded API for video conferencing features like room management, analytics, recording, and live session control.
TikTok
TikTok integration for getting post details and video subtitles
Twitter NoAuth
Provides Twitter API access without requiring local credential setup. Credentials must be provided at runtime.
LGTM Images
Fetches random LGTM (Looks Good To Me) images for use in code reviews and developer communications.
Agent Communication MCP Server
Enables room-based messaging between multiple agents.
