QuantConnect PDF MCP Server
Converts QuantConnect PDF documentation into searchable markdown, enabling fast, context-aware search.
MCP Server Knowledge Engine
A powerful Model Context Protocol (MCP) server that transforms any PDF document collection into an intelligent, searchable knowledge base accessible through Claude Desktop. This server features advanced search capabilities using TF-IDF scoring, proximity matching, and domain-specific optimization.
š Key Features
- š Advanced Search Engine: TF-IDF-based inverted index with proximity matching for highly relevant results
- š Universal PDF Support: Process any PDF collection - technical docs, legal papers, research, and more
- ā” High Performance: Cached search index, incremental processing, and background initialization
- šÆ Domain Optimization: Configure domain-specific keywords for enhanced search accuracy
- āļø Fully Configurable: JSON-based configuration with environment variable support
- š ļø Comprehensive CLI: Complete server management through intuitive commands
- š Seamless MCP Integration: Ready-to-use with Claude Desktop, VS Code, and other MCP clients
- š Smart Caching: MD5 hash-based change detection for efficient updates
š Quick Start
Prerequisites
- Python 3.8 or higher
- pip (Python package manager)
- Claude Desktop app (for MCP integration)
1. Installation
# Clone the repository
git clone https://github.com/lhstorm/mcp_server_knowledge_engine.git
cd mcp_server_knowledge_engine
# Create virtual environment (recommended)
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
2. Create Your Server
# Interactive setup
python manage_server.py create-config
# This will ask you for:
# - Server name (e.g., 'legal-docs-server')
# - Display name (e.g., 'Legal Documents Server')
# - PDF folder location
# - Domain-specific keywords
3. Add PDF Documents
# Add individual PDFs
python manage_server.py add-pdf /path/to/document.pdf
python manage_server.py add-pdf /path/to/another-doc.pdf
# Or copy PDFs directly to your configured folder
4. Process Documents
# Convert PDFs to searchable format
python manage_server.py process-pdfs
5. Generate MCP Configuration
# Generate configuration for Claude Desktop
python generate_mcp_config.py --merge
# Or get the config to copy manually
python generate_mcp_config.py
6. Start Using with Claude
Restart Claude Desktop and your server will appear in the MCP tools menu!
š¬ Using with Claude Desktop
Once configured, you can interact with your PDFs naturally:
Example prompts:
- "Search for information about [topic] in the documentation"
- "What does the documentation say about [specific feature]?"
- "Find all references to [keyword] across all PDFs"
- "Show me the content of [document name]"
- "List all available documents"
Advanced usage:
- "Search for [term1] near [term2]" - Leverages proximity matching
- "Get page 15 of [document]" - Retrieves specific pages
- "Find the top 10 results for [query]" - Adjusts result count
š Project Structure
mcp_server_knowledge_engine/
āāā server.py # Main MCP server with search engine
āāā config.py # Configuration management & validation
āāā manage_server.py # CLI for server management
āāā generate_mcp_config.py # MCP configuration generator
āāā convert_pdfs.py # Standalone PDF conversion utility
āāā server_config.json # Active server configuration
āāā requirements.txt # Python dependencies
āāā examples/ # Example configurations
ā āāā legal_docs_config.json
ā āāā medical_docs_config.json
ā āāā research_papers_config.json
ā āāā tech_docs_config.json
āāā your-pdfs/ # Your PDF folder (configurable)
āāā document1.pdf
āāā document2.pdf
āāā markdown/ # Auto-generated cache
āāā .pdf_cache.json # Processing metadata
āāā .search_index.pkl # Cached search index
āāā document1.md # Converted documents
āāā document2.md
āļø Configuration
The server is configured via server_config.json
:
{
"server": {
"name": "my-docs-server",
"display_name": "My Documents Server",
"description": "Search through my PDF collection",
"version": "1.0.0"
},
"storage": {
"pdf_folder": "./docs",
"markdown_folder": "./docs/markdown",
"domain_keywords": ["keyword1", "keyword2", "domain-term"]
},
"tools": {
"search": {
"name": "search_docs",
"description": "Search through PDF documentation"
},
"list": {
"name": "list_docs",
"description": "List all available documents"
},
"content": {
"name": "get_document_content",
"description": "Get full content from documents"
},
"max_results_default": 5
},
"processing": {
"cache_enabled": true,
"parallel_processing": true,
"max_file_size_mb": 50,
"context_size": 500
}
}
š ļø Management Commands
Server Management
# Create new configuration
python manage_server.py create-config
# Test configuration
python manage_server.py test
# Generate MCP config
python manage_server.py generate-mcp-config
PDF Management
# List all PDFs
python manage_server.py list-pdfs
# Add PDF
python manage_server.py add-pdf document.pdf
# Remove PDF
python manage_server.py remove-pdf document.pdf
# Process all PDFs
python manage_server.py process-pdfs
MCP Configuration
# Print MCP config
python generate_mcp_config.py
# Automatically merge with Claude Desktop config
python generate_mcp_config.py --merge
# Save to file
python generate_mcp_config.py --output my_mcp_config.json
š” Usage Examples
Legal Documents Server
{
"server": {
"name": "legal-docs-server",
"display_name": "Legal Documents Server"
},
"storage": {
"domain_keywords": ["contract", "liability", "jurisdiction", "plaintiff", "defendant"]
}
}
Technical Documentation Server
{
"server": {
"name": "tech-docs-server",
"display_name": "Technical Documentation Server"
},
"storage": {
"domain_keywords": ["API", "function", "class", "method", "parameter", "return"]
}
}
Research Papers Server
{
"server": {
"name": "research-server",
"display_name": "Research Papers Server"
},
"storage": {
"domain_keywords": ["hypothesis", "methodology", "results", "conclusion", "analysis"]
}
}
š§ Available MCP Tools
Each server provides three configurable tools:
-
Search Tool (default:
search_docs
)- Intelligent search through all documents
- TF-IDF scoring with proximity matching
- Returns relevant excerpts with context
-
List Tool (default:
list_docs
)- Lists all available documents
- Shows document metadata and page counts
-
Content Tool (default:
get_document_content
)- Retrieves full document content
- Can fetch specific pages
- Includes complete markdown formatting
šÆ Domain Customization
The server adapts to your domain through:
- Domain Keywords: Configure terms important to your field
- Tool Names: Customize tool names (e.g.,
search_legal_docs
) - Descriptions: Tailor descriptions for your use case
- Context Size: Adjust how much context to return in search results
š How the Search Engine Works
Inverted Index Architecture
The server uses an advanced inverted index for lightning-fast searches:
- Document Processing: PDFs are converted to markdown and tokenized
- Index Building: Words are mapped to their locations (document, page, position)
- TF-IDF Scoring:
- TF (Term Frequency): How often a word appears in a document
- IDF (Inverse Document Frequency): How rare a word is across all documents
- Combined score ensures relevant, unique results rank higher
Search Features
- Proximity Boosting: Multi-word queries score higher when terms appear close together
- Context Extraction: Returns relevant snippets with search terms highlighted
- Domain Keyword Recognition: Configured keywords get special treatment
- Page-Level Precision: Results include specific page numbers
- Smart Caching: Search index persists between server restarts
š Performance Optimizations
- Incremental Processing: MD5 hash-based change detection - only new/modified PDFs are processed
- Persistent Search Index: Pickled index loads instantly on server restart
- Background Initialization: Server accepts connections while building index
- Memory Efficiency: Streaming PDF processing and markdown storage
- Configurable Limits: Control file size limits and processing parameters
š Troubleshooting
Common Issues & Solutions
Server not appearing in Claude Desktop:
- Ensure MCP configuration was merged:
python generate_mcp_config.py --merge
- Check Python path:
which python
orwhere python
(Windows) - Verify server_config.json exists and is valid JSON
- Restart Claude Desktop after configuration changes
PDFs not processing:
- Check folder permissions:
ls -la /path/to/pdf/folder
- Verify PDF files aren't corrupted:
file document.pdf
- Look for errors in stderr:
python server.py 2>error.log
- Ensure sufficient disk space for markdown cache
Search returns no/poor results:
- Initial indexing may take time - check stderr for progress
- Verify markdown files exist:
ls markdown/*.md
- Check search index exists:
ls markdown/.search_index.pkl
- Try single-word queries first, then expand
- Review domain keywords in configuration
Server crashes or hangs:
- Check Python version (3.8+ required):
python --version
- Verify all dependencies installed:
pip install -r requirements.txt
- Clear cache and reprocess:
rm -rf markdown/.pdf_cache.json markdown/.search_index.pkl
- Check for file locking issues on Windows
Debug Mode
# Run with full debug output
python server.py 2>&1 | tee debug.log
# Check server initialization
grep "initialization" debug.log
# Monitor PDF processing
grep "Processing\|Error" debug.log
Validation Commands
# Test configuration validity
python manage_server.py test
# Verify configuration loading
python -c "from config import load_config_from_env_or_file; c=load_config_from_env_or_file(); print(f'ā Config loaded: {c.server.name}')"
# Check MCP integration
python generate_mcp_config.py # Should output valid JSON
š Advanced Usage
Multiple Servers
You can run multiple specialized servers:
# Legal documents server
python manage_server.py --config legal_config.json create-config
# Technical docs server
python manage_server.py --config tech_config.json create-config
# Research papers server
python manage_server.py --config research_config.json create-config
Batch Processing
# Process multiple PDF folders
for folder in docs legal_docs tech_docs; do
python convert_pdfs.py "$folder" "$folder/markdown"
done
Custom Keywords
Configure domain-specific keywords for better search relevance:
{
"storage": {
"domain_keywords": [
"algorithm", "data structure", "complexity",
"optimization", "performance", "scalability"
]
}
}
šļø Architecture Overview
Core Components
-
SearchIndex Class (
server.py:27-140
)- Implements inverted index with TF-IDF scoring
- Handles word tokenization and document indexing
- Provides proximity-based ranking for multi-word queries
-
GenericPDFServer Class (
server.py:142-661
)- Main server implementation with MCP protocol handling
- Manages PDF processing pipeline
- Handles async operations and background initialization
-
Configuration System (
config.py
)- Dataclass-based type-safe configuration
- JSON schema validation
- Environment variable support
-
Management CLI (
manage_server.py
)- Interactive configuration creation
- PDF management operations
- Server testing and validation
Data Flow
PDFs ā PDF Reader ā Markdown Converter ā Search Index ā MCP Tools ā Claude
ā ā ā
[.pdf files] [.md cache files] [.search_index.pkl]
š Current Server Configuration
The repository currently includes a configuration for QuantConnect documentation (server_config.json
). To create your own server:
# Option 1: Interactive setup
python manage_server.py create-config
# Option 2: Copy and modify an example
cp examples/tech_docs_config.json server_config.json
# Edit server_config.json with your settings
š Example Use Cases
- Legal Firms: Search through contracts, case files, and legal documents
- Research Labs: Query scientific papers and technical reports
- Software Teams: Access API documentation and technical specs
- Medical Practices: Search patient records and medical literature
- Educational Institutions: Browse course materials and textbooks
š¤ Contributing
We welcome contributions! Here are some ways to help:
Enhancement Ideas
- Document Format Support: Add support for Word, HTML, or other formats
- Search Improvements: Implement semantic search, fuzzy matching, or ML-based ranking
- Performance: Add database backend, parallel processing, or distributed indexing
- Tools: Create specialized MCP tools for specific domains
- UI: Build a web interface for configuration management
Development Guidelines
- Follow existing code style and patterns
- Add tests for new functionality
- Update documentation for new features
- Submit PRs with clear descriptions
š Security Considerations
- The server only has read access to specified PDF folders
- No external network calls are made during operation
- Sensitive data remains local - nothing is sent to external services
- Configure appropriate file permissions for your PDF folders
š License
This project is open source. See LICENSE file for details.
š Acknowledgments
Built with the Model Context Protocol by Anthropic.
Ready to transform your PDFs into a searchable knowledge base?
Run python manage_server.py create-config
to get started! š
š¦ Dependencies
- mcp: Model Context Protocol SDK for building MCP servers
- PyPDF2: PDF parsing and text extraction
- asyncio: Asynchronous I/O for concurrent operations
- jsonschema: JSON validation for configuration files
All dependencies are lightweight and have minimal system requirements.
Related Servers
OrdiscanMCP v1
MCP server for interacting with the Ordiscan API to query Bitcoin ordinals and inscriptions. Requires an Ordiscan API key.
Higress AI-Search MCP Server
Provides an AI search tool to enhance AI model responses with real-time search results from various search engines using the Higress ai-search feature.
PubChem MCP Server
Search and access chemical compound information from the PubChem database.
MCP Omnisearch
Unified access to multiple search providers and AI tools like Tavily, Perplexity, Kagi, Jina AI, Brave, and Firecrawl.
Mapbox
Unlock geospatial intelligence through Mapbox APIs like geocoding, POI search, directions, isochrones and more.
OpenAI WebSearch
Provides web search functionality for AI assistants using the OpenAI API, enabling access to up-to-date information.
Web Search MCP
Scrapes Google search results using a headless browser. Requires Chrome to be installed.
Financial AI Agent
An AI agent providing unified access to financial market data and news articles.
RagDocs
A server for RAG-based document search and management using Qdrant vector database with Ollama or OpenAI embeddings.
Inkeep
RAG Search over your content powered by Inkeep