MCP PDF Reader
Extract text, images, and perform OCR on PDF documents using Tesseract OCR.
MCP PDF Reader Server (Python + FastMCP)
A powerful Model Context Protocol (MCP) server built with FastMCP that provides comprehensive PDF processing capabilities including text extraction, image extraction, and OCR for reading text within images.
Features
- Text Extraction: Extract text content from PDF pages
- Image Extraction: Extract all images from PDF files
- OCR Capabilities: Read text from images using Tesseract OCR
- Comprehensive Analysis: Get detailed PDF structure and metadata
- Page Range Support: Process specific page ranges
- Multiple Languages: OCR support for multiple languages
Prerequisites
System Dependencies
Tesseract OCR
You need to install Tesseract OCR on your system:
Ubuntu/Debian:
sudo apt update
sudo apt install tesseract-ocr tesseract-ocr-eng
macOS:
brew install tesseract
Windows:
- Download from: https://github.com/UB-Mannheim/tesseract/wiki
- Install and add to PATH
- Or use:
conda install -c conda-forge tesseract
Additional Language Packs (Optional)
# For multiple languages
sudo apt install tesseract-ocr-fra tesseract-ocr-deu tesseract-ocr-spa
Installation
Quick Start with UV
- Install UV (if not already installed):
# macOS/Linux
curl -LsSf https://astral.sh/uv/install.sh | sh
# Windows
powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
- Clone/Create the project:
mkdir mcp-pdf-reader-server
cd mcp-pdf-reader-server
- Initialize and install with UV:
# Copy the files (pdf_reader_server.py and pyproject.toml)
# Then install dependencies
uv sync
- Verify installation:
uv run python -c "import pytesseract; print(pytesseract.get_tesseract_version())"
Alternative: Manual Setup
If you prefer traditional setup:
- Create virtual environment:
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
- Install dependencies:
pip install fastmcp PyMuPDF pytesseract Pillow
Usage
Running the Server
With UV:
uv run python pdf_reader_server.py
Or if you have the environment activated:
python pdf_reader_server.py
The server will start and listen for MCP requests on stdin/stdout.
Available Tools
1. read_pdf_text
Extract text content from PDF pages.
Parameters:
file_path
(string, required): Path to the PDF filepage_range
(object, optional): Dict withstart
andend
page numbers
Example:
{
"file_path": "/path/to/document.pdf",
"page_range": {"start": 1, "end": 5}
}
2. extract_pdf_images
Extract all images from a PDF file.
Parameters:
file_path
(string, required): Path to the PDF fileoutput_dir
(string, optional): Directory to save imagespage_range
(object, optional): Page range to process
Example:
{
"file_path": "/path/to/document.pdf",
"output_dir": "/path/to/images/",
"page_range": {"start": 1, "end": 3}
}
3. read_pdf_with_ocr
Extract text from both regular text and images using OCR.
Parameters:
file_path
(string, required): Path to the PDF filepage_range
(object, optional): Page range to processocr_language
(string, optional): OCR language code (default: "eng")
Example:
{
"file_path": "/path/to/document.pdf",
"ocr_language": "eng+fra",
"page_range": {"start": 1, "end": 10}
}
Supported OCR Languages:
eng
- Englishfra
- Frenchdeu
- Germanspa
- Spanisheng+fra
- Multiple languages
4. get_pdf_info
Get comprehensive metadata and statistics about a PDF.
Parameters:
file_path
(string, required): Path to the PDF file
5. analyze_pdf_structure
Analyze the structure and content distribution of a PDF.
Parameters:
file_path
(string, required): Path to the PDF file
Configuration with Claude Desktop
With UV
Add this to your claude_desktop_config.json
:
{
"mcpServers": {
"pdf-reader": {
"command": "uv",
"args": ["run", "python", "/path/to/your/pdf_reader_server.py"],
"cwd": "/path/to/your/mcp-pdf-reader-server"
}
}
}
With Virtual Environment
{
"mcpServers": {
"pdf-reader": {
"command": "/path/to/your/.venv/bin/python",
"args": ["/path/to/your/pdf_reader_server.py"]
}
}
}
System Python
{
"mcpServers": {
"pdf-reader": {
"command": "python",
"args": ["/path/to/your/pdf_reader_server.py"],
"env": {
"PYTHONPATH": "/path/to/your/.venv/lib/python3.x/site-packages"
}
}
}
}
Example Responses
Text Extraction Response
{
"success": true,
"file_path": "/path/to/document.pdf",
"pages_processed": "1-3",
"total_pages": 10,
"pages_text": [
{
"page_number": 1,
"text": "Page 1 content...",
"word_count": 125
}
],
"combined_text": "All text combined...",
"total_word_count": 1250,
"total_character_count": 8750
}
OCR Response
{
"success": true,
"file_path": "/path/to/document.pdf",
"pages_processed": "1-2",
"ocr_language": "eng",
"pages_data": [
{
"page_number": 1,
"text": "Regular text from PDF...",
"ocr_text": "Text extracted from images...",
"images_with_text": [
{
"image_index": 1,
"ocr_text": "Text from image 1",
"confidence": "high"
}
],
"combined_text": "Combined text and OCR...",
"text_word_count": 100,
"ocr_word_count": 25
}
],
"summary": {
"total_text_word_count": 200,
"total_ocr_word_count": 50,
"combined_word_count": 250,
"images_processed": 3
},
"all_text_combined": "All extracted text..."
}
Performance Considerations
OCR Performance
- OCR processing can be slow for large images
- Consider processing smaller page ranges for faster results
- Images smaller than 50x50 pixels are automatically skipped
Memory Usage
- Large PDFs with many images may consume significant memory
- The server processes pages sequentially to manage memory usage
- Extracted images are saved to disk to reduce memory pressure
Optimization Tips
- Use page ranges for large documents
- Specify output directories for image extraction to avoid temp file buildup
- Choose appropriate OCR languages to improve accuracy and speed
- Preprocess images if OCR quality is poor (consider adding OpenCV)
Troubleshooting
Common Issues
-
Tesseract not found:
TesseractNotFoundError: tesseract is not installed
- Install Tesseract OCR system package
- Ensure it's in your PATH
-
Permission errors:
- Ensure the Python process has read access to PDF files
- Ensure write access to output directories
-
Poor OCR results:
- Try different OCR language codes
- Consider image preprocessing
- Check if images are high enough resolution
-
Memory errors:
- Process smaller page ranges
- Close other applications
- Consider increasing available RAM
Debug Mode
Run with debug logging using UV:
PYTHONUNBUFFERED=1 uv run python pdf_reader_server.py
Or with regular Python:
PYTHONUNBUFFERED=1 python pdf_reader_server.py
Testing OCR
Test Tesseract directly:
tesseract --list-langs
tesseract image.png output.txt
Dependencies
- fastmcp: Modern MCP server framework
- PyMuPDF: Fast PDF processing and rendering
- pytesseract: Python wrapper for Tesseract OCR
- Pillow: Image processing library
- tesseract-ocr: System OCR engine
Advanced Features
Custom OCR Configuration
You can modify the OCR configuration in the code:
ocr_text = pytesseract.image_to_string(
pil_image,
lang=ocr_language,
config='--psm 6 -c tessedit_char_whitelist=0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz '
)
Image Preprocessing
For better OCR results, consider adding image preprocessing:
# Add to requirements: opencv-python, numpy
import cv2
import numpy as np
# Preprocessing example
def preprocess_image(image):
gray = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
return Image.fromarray(thresh)
Contributing
- Fork the repository
- Create a feature branch
- Add tests for new functionality
- Submit a pull request
License
MIT License - see LICENSE file for details.
Related Servers
Deep Directory Tree MCP
Visualize directory structures with real-time updates, configurable depth, and smart exclusions for efficient project navigation.
WebP Batch Converter
Batch convert PNG, JPG, and JPEG images to WebP format with options for quality, lossless mode, and multi-threaded processing.
Cross-Platform Filesystem MCP Server
A cross-platform filesystem server for Linux, macOS, and Windows with secure path restrictions.
Excel Analyser MCP
Read and analyze Excel (.xlsx) and CSV (.csv) files with scalable, chunked, and column-specific data access, ideal for large datasets.
Filesystem MCP Server
A server for performing filesystem operations such as reading/writing files, managing directories, and searching.
Secure MCP Filesystem Server
A secure MCP server for accessing the local filesystem within predefined directories.
Claude Text Editor
An MCP server for viewing, editing, and creating text files, based on the Claude built-in text editor tool.
Desktop Commander MCP
Execute terminal commands and edit local files on your desktop.
File Convert MCP Server
Convert files between various formats, including images, documents, audio, video, and more.
File Finder
Search for files in the local filesystem using a path fragment.