Interact with any Gremlin-compatible graph database using natural language, with support for schema discovery, complex queries, and data import/export.
Connect AI agents like Claude, Cursor, and Windsurf to your graph databases!
An MCP (Model Context Protocol) server that enables AI assistants to interact with any Gremlin-compatible graph database through natural language. Query your data, discover schemas, analyze relationships, and manage graph data using simple conversations.
Talk to your graph database naturally:
Your AI assistant gets access to these powerful tools:
Tool | Purpose | What It Does |
---|---|---|
π get_graph_status | Health Check | Verify database connectivity and server status |
π get_graph_schema | Schema Discovery | Get complete graph structure with nodes, edges, and relationships |
β‘ run_gremlin_query | Query Execution | Execute any Gremlin traversal query with full syntax support |
π refresh_schema_cache | Cache Management | Force immediate refresh of cached schema information |
π₯ import_graph_data | Data Import | Load data from GraphSON, CSV, or JSON with batch processing |
π€ export_subgraph | Data Export | Extract subgraphs to JSON, GraphSON, or CSV formats |
# The npx command will automatically install the package if needed
# No separate installation step required
# Clone and setup
git clone https://github.com/kpritam/gremlin-mcp.git
cd gremlin-mcp
npm install
npm run build
Add this to your MCP client configuration:
Using the published package (recommended):
{
"mcpServers": {
"gremlin": {
"command": "npx",
"args": ["@kpritam/gremlin-mcp"],
"env": {
"GREMLIN_ENDPOINT": "localhost:8182",
"LOG_LEVEL": "info"
}
}
}
}
From source:
{
"mcpServers": {
"gremlin": {
"command": "node",
"args": ["/path/to/gremlin-mcp/dist/server.js"],
"env": {
"GREMLIN_ENDPOINT": "localhost:8182",
"LOG_LEVEL": "info"
}
}
}
}
{
"mcpServers": {
"gremlin": {
"command": "npx",
"args": ["@kpritam/gremlin-mcp"],
"env": {
"GREMLIN_ENDPOINT": "your-server.com:8182",
"GREMLIN_USERNAME": "your-username",
"GREMLIN_PASSWORD": "your-password",
"GREMLIN_USE_SSL": "true"
}
}
}
}
Make sure your Gremlin-compatible database is running:
# For Apache TinkerPop Gremlin Server
./bin/gremlin-server.sh start
# Or using Docker
docker run -p 8182:8182 tinkerpop/gremlin-server
Restart your AI client and try asking:
"Can you check if my graph database is connected and show me its schema?"
You ask: "What's the structure of my graph database?"
AI response: The AI calls get_graph_schema
and tells you about your node types, edge types, and how they're connected.
You ask: "Show me all people over 30 and their relationships"
AI response: The AI executes g.V().hasLabel('person').has('age', gt(30)).out().path()
and explains the results in natural language.
You ask: "Give me some statistics about my graph"
AI response: The AI runs multiple queries to count nodes, edges, and analyze the distribution, then presents a summary.
You ask: "Load this GraphSON data into my database"
AI response: The AI uses import_graph_data
to process your data in batches and reports the import status.
Why this matters: AI agents work best when they know the exact valid values for properties. Instead of guessing or making invalid queries, they can use precise, real values from your data.
One of the most powerful features of this MCP server is Automatic Enum Discovery - it intelligently analyzes your graph data to discover valid property values and provides them as enums to AI agents.
Without Enum Discovery:
AI: "I see this vertex has a 'status' property of type 'string'...
Let me try querying with status='active'"
Result: β No results (actual values are 'CONFIRMED', 'PENDING', 'CANCELLED')
With Enum Discovery:
AI: "I can see the 'status' property has these exact values:
['CONFIRMED', 'PENDING', 'CANCELLED', 'WAITLISTED']
Let me query with status='CONFIRMED'"
Result: β
Perfect results using real data values
The server automatically scans your graph properties and:
Example Output:
{
"name": "bookingStatus",
"type": ["string"],
"cardinality": "single",
"enum": ["CONFIRMED", "PENDING", "CANCELLED", "WAITLISTED"],
"sample_values": ["CONFIRMED", "PENDING"]
}
Fine-tune enum discovery to match your data:
# Enable/disable enum discovery
GREMLIN_ENUM_DISCOVERY_ENABLED="true" # Default: true
# Control what gets detected as enum
GREMLIN_ENUM_CARDINALITY_THRESHOLD="10" # Max distinct values for enum (default: 10)
# Exclude specific properties
GREMLIN_ENUM_PROPERTY_BLACKLIST="id,uuid,timestamp,createdAt,updatedAt"
# Schema optimization
GREMLIN_SCHEMA_MAX_ENUM_VALUES="10" # Limit enum values shown (default: 10)
GREMLIN_SCHEMA_INCLUDE_SAMPLE_VALUES="false" # Reduce schema size (default: false)
Some properties should never be treated as enums:
Automatically Excluded:
Manual Exclusion:
# Exclude specific properties by name
GREMLIN_ENUM_PROPERTY_BLACKLIST="userId,sessionId,description,notes,content"
Common Blacklist Patterns:
id,uuid,guid
- Unique identifierstimestamp,createdAt,updatedAt,lastModified
- Time fieldsdescription,notes,comment,content,text
- Free text fieldsemail,url,phone,address
- Personal/contact datahash,token,key,secret
- Security-related fieldsE-commerce Graph:
{
"orderStatus": {
"enum": ["PENDING", "PROCESSING", "SHIPPED", "DELIVERED", "CANCELLED"]
},
"productCategory": {
"enum": ["ELECTRONICS", "CLOTHING", "BOOKS", "HOME", "SPORTS"]
},
"paymentMethod": {
"enum": ["CREDIT_CARD", "PAYPAL", "BANK_TRANSFER", "CRYPTO"]
}
}
Social Network Graph:
{
"relationshipType": {
"enum": ["FRIEND", "FAMILY", "COLLEAGUE", "ACQUAINTANCE"]
},
"privacyLevel": {
"enum": ["PUBLIC", "FRIENDS", "PRIVATE"]
},
"accountStatus": {
"enum": ["ACTIVE", "SUSPENDED", "DEACTIVATED"]
}
}
For Large Datasets:
GREMLIN_ENUM_CARDINALITY_THRESHOLD="5" # Stricter enum detection
GREMLIN_SCHEMA_MAX_ENUM_VALUES="5" # Fewer values in schema
For Rich Categorical Data:
GREMLIN_ENUM_CARDINALITY_THRESHOLD="25" # More permissive detection
GREMLIN_SCHEMA_MAX_ENUM_VALUES="20" # Show more enum values
For Performance-Critical Environments:
GREMLIN_ENUM_DISCOVERY_ENABLED="false" # Disable for faster schema loading
GREMLIN_SCHEMA_INCLUDE_SAMPLE_VALUES="false" # Minimal schema size
This intelligent enum discovery transforms how AI agents interact with your graph data, making queries more accurate and insights more meaningful! π―
Works with any Gremlin-compatible graph database:
Database | Status | Notes |
---|---|---|
π’ Apache TinkerPop | β Tested | Local development and CI testing |
π‘ Amazon Neptune | π§ Compatible | Designed for, not yet tested |
π‘ JanusGraph | π§ Compatible | Designed for, not yet tested |
π‘ Azure Cosmos DB | π§ Compatible | With Gremlin API |
π‘ ArcadeDB | π§ Compatible | With Gremlin support |
# Required
GREMLIN_ENDPOINT="localhost:8182"
# Optional
GREMLIN_USE_SSL="true" # Enable SSL/TLS
GREMLIN_USERNAME="username" # Authentication
GREMLIN_PASSWORD="password" # Authentication
GREMLIN_IDLE_TIMEOUT="300" # Connection timeout (seconds)
LOG_LEVEL="info" # Logging level
# Schema and performance tuning (see Automatic Enum Discovery section for details)
GREMLIN_ENUM_DISCOVERY_ENABLED="true" # Enable smart enum detection
GREMLIN_ENUM_CARDINALITY_THRESHOLD="10" # Max distinct values for enum
GREMLIN_ENUM_PROPERTY_BLACKLIST="id,timestamp" # Exclude specific properties
GREMLIN_SCHEMA_INCLUDE_SAMPLE_VALUES="false" # Reduce schema size
GREMLIN_SCHEMA_MAX_ENUM_VALUES="10" # Limit enum values shown
β οΈ Important: This server is designed for development and trusted environments.
Problem | Solution |
---|---|
"Connection refused" | Verify Gremlin server is running: curl http://localhost:8182/ |
"Authentication failed" | Check GREMLIN_USERNAME and GREMLIN_PASSWORD |
"Invalid endpoint" | Use format host:port or host:port/g for traversal source |
GREMLIN_IDLE_TIMEOUT
# Test connection
curl -f http://localhost:8182/
# Check server logs
tail -f logs/gremlin-mcp.log
# Verify schema endpoint
curl http://localhost:8182/gremlin
The following sections are for developers who want to contribute to or modify the server.
# Clone and install
git clone https://github.com/kpritam/gremlin-mcp.git
cd gremlin-mcp
npm install
# Development with hot reload
npm run dev
# Run tests
npm test
npm run test:coverage
npm run test:watch
# Integration tests (requires running Gremlin server)
GREMLIN_ENDPOINT=localhost:8182/g npm run test:it
# All tests together (unit + integration)
npm test && npm run test:it
src/
βββ server.ts # Main MCP server
βββ config.ts # Environment configuration
βββ gremlin/
β βββ client.ts # Gremlin database client
β βββ models.ts # TypeScript types and schemas
βββ handlers/
β βββ tools.ts # MCP tool implementations
β βββ resources.ts # MCP resource handlers
βββ utils/ # Utility functions
Command | Purpose |
---|---|
npm run build | Compile TypeScript to JavaScript |
npm run dev | Development mode with hot reload |
npm test | Run unit test suite |
npm run lint | Code linting with ESLint |
npm run format | Code formatting with Prettier |
npm run validate | Run all checks (format, lint, type-check, test) |
The server implements intelligent schema discovery with enumeration detection:
// Property with detected enum values
{
"name": "status",
"type": ["string"],
"cardinality": "single",
"enum": ["Confirmed", "Pending", "Cancelled", "Waitlisted"]
}
RULES.md
npm run validate
before committingtests/
): Individual component testing
tests/integration/
): Full workflow testing
MIT License - feel free to use in your projects!
Questions? Check the troubleshooting guide or open an issue.
Analyze, lint, and convert SQL dialects using SQLGlot.
Interact with the Stellar blockchain to manage wallets, list tokens, query balances, and transfer funds.
Connect AI tools with Pinecone projects to search, configure indexes, generate code, and manage data.
Access live U.S. congressional data from the Congress.gov API.
An MCP server for PostgreSQL providing index tuning, explain plans, health checks, and safe SQL execution.
Integrates AI assistants with the Metabase analytics platform.
Manages personal knowledge using a local Neo4j container, with data imported from JSON files.
A read-only MCP server for Pipedrive, enabling LLMs to query live data using the CData JDBC Driver.
Connect to any relational database, and be able to get valid SQL, and ask questions like what does a certain column prefix mean.
Integrates with Trino and Iceberg for advanced data exploration, querying, and table maintenance.