Expense Tracker
Automated expense management with a Supabase backend and hierarchical category support.
Expense Tracker Backend
AI-powered expense tracking system with natural language interface, intelligent categorization, and real-time sync.
Architecture
The system uses a two-server architecture:
- MCP Server: Core expense tracking tools exposed via Model Context Protocol
- Gemini AI Server: FastAPI server providing chat interface with authentication
Features
- š¤ Natural language expense management via Gemini AI
- š§ Intelligent categorization using embeddings and similarity search
- š JWT authentication with Supabase
- š Hierarchical categories for organization
- š·ļø Predefined tag system
- š Real-time data sync
- š Learning system that improves over time
Quick Start
Prerequisites
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
Environment Setup
cp .env.example .env
# Add your credentials:
# - SUPABASE_URL
# - SUPABASE_KEY
# - GOOGLE_API_KEY (for Gemini)
Database Setup
Execute the SQL scripts in your Supabase SQL Editor:
# Core tables
scripts/create_tables.sql
# Embeddings support
scripts/create_embeddings_schema.sql
Run Both Servers
Terminal 1 - MCP Server:
python run_mcp.py
Terminal 2 - Gemini AI Server:
uvicorn app.servers.gemini.main:app --reload --port 8000
Initialize Data
# Populate categories
python scripts/populate_hierarchical_categories.py
# Populate predefined tags
python scripts/populate_predefined_tags.py
API Endpoints
Chat Interface
POST /chat- Send natural language commandsPOST /auth/refresh- Refresh JWT token
MCP Tools (via chat)
- Create expenses from natural language
- Auto-categorize transactions
- Get spending summaries
- Analyze subscriptions
- View recent transactions
Flutter Client
refer https://github.com/keyurgit45/expense-tracker-client
Testing
# Run all tests with mocks
ENVIRONMENT=test pytest tests/ -v
# Run specific components
ENVIRONMENT=test pytest tests/test_mcp_tools.py -v
ENVIRONMENT=test pytest tests/test_categorization.py -v
Project Structure
backend/
āāā app/
ā āāā core/ # Business logic
ā āāā servers/
ā ā āāā gemini/ # AI chat server
ā ā āāā mcp/ # MCP tool server
ā āāā shared/ # Shared configs
āāā scripts/ # Utilities
āāā tests/ # Test suite
AI Categorization
The system uses a hybrid approach:
- Generates embeddings for transactions using Sentence Transformers
- Finds similar past transactions using pgvector
- Uses weighted voting to predict categories
- Falls back to rule-based matching
- Learns from user confirmations
Development
- API docs: http://localhost:8000/docs
- Frontend integration: Configure CORS in Gemini server
- MCP tools can be tested directly via chat interface
Related Servers
Rework
Integrate AI applications with the Rework platform to manage projects, tasks, workflows, and jobs.
Todoist
Manage your Todoist tasks and projects using the Todoist Python API.
Nuclei Server
A simple notes system with resources, tools, and prompts.
OneNote
Browse and interact with the OneNote web app using browser automation.
JIRA
Integrate with JIRA to allow AI assistants to directly interact with JIRA issues.
Anki MCP
A MCP server that enables AI assistants to interact with Anki, the spaced repetition flashcard application.
Rember
Create spaced repetition flashcards in Rember to remember anything you learn in your chats
Google Calendar
Create and manage Google Calendar events with AI assistants.
AnkiConnect
AnkiConnect MCP server for interacting with Anki via AnkiConnect.
Issuebage MCP Server
digital badge issuing platform