Expense Tracker

Automated expense management with a Supabase backend and hierarchical category support.

Expense Tracker Backend

AI-powered expense tracking system with natural language interface, intelligent categorization, and real-time sync.

Architecture

The system uses a two-server architecture:

  1. MCP Server: Core expense tracking tools exposed via Model Context Protocol
  2. Gemini AI Server: FastAPI server providing chat interface with authentication

Features

  • šŸ¤– Natural language expense management via Gemini AI
  • 🧠 Intelligent categorization using embeddings and similarity search
  • šŸ” JWT authentication with Supabase
  • šŸ“Š Hierarchical categories for organization
  • šŸ·ļø Predefined tag system
  • šŸ“ˆ Real-time data sync
  • šŸ”„ Learning system that improves over time

Quick Start

Prerequisites

python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

Environment Setup

cp .env.example .env
# Add your credentials:
# - SUPABASE_URL
# - SUPABASE_KEY
# - GOOGLE_API_KEY (for Gemini)

Database Setup

Execute the SQL scripts in your Supabase SQL Editor:

# Core tables
scripts/create_tables.sql
# Embeddings support
scripts/create_embeddings_schema.sql

Run Both Servers

Terminal 1 - MCP Server:

python run_mcp.py

Terminal 2 - Gemini AI Server:

uvicorn app.servers.gemini.main:app --reload --port 8000

Initialize Data

# Populate categories
python scripts/populate_hierarchical_categories.py

# Populate predefined tags
python scripts/populate_predefined_tags.py

API Endpoints

Chat Interface

  • POST /chat - Send natural language commands
  • POST /auth/refresh - Refresh JWT token

MCP Tools (via chat)

  • Create expenses from natural language
  • Auto-categorize transactions
  • Get spending summaries
  • Analyze subscriptions
  • View recent transactions

Flutter Client

refer https://github.com/keyurgit45/expense-tracker-client

Testing

# Run all tests with mocks
ENVIRONMENT=test pytest tests/ -v

# Run specific components
ENVIRONMENT=test pytest tests/test_mcp_tools.py -v
ENVIRONMENT=test pytest tests/test_categorization.py -v

Project Structure

backend/
ā”œā”€ā”€ app/
│   ā”œā”€ā”€ core/              # Business logic
│   ā”œā”€ā”€ servers/
│   │   ā”œā”€ā”€ gemini/       # AI chat server
│   │   └── mcp/          # MCP tool server
│   └── shared/           # Shared configs
ā”œā”€ā”€ scripts/              # Utilities
└── tests/               # Test suite

AI Categorization

The system uses a hybrid approach:

  1. Generates embeddings for transactions using Sentence Transformers
  2. Finds similar past transactions using pgvector
  3. Uses weighted voting to predict categories
  4. Falls back to rule-based matching
  5. Learns from user confirmations

Development

  • API docs: http://localhost:8000/docs
  • Frontend integration: Configure CORS in Gemini server
  • MCP tools can be tested directly via chat interface

Related Servers