system-prompts-mcp-server
Model Context Protocol server exposing system prompt files and summaries.
📝 System Prompts MCP Server
Access system prompts from AI tools in your workflow. Browse and fetch prompts from Devin, Cursor, Claude, GPT, and more. Model-aware suggestions help you find the perfect prompt for your LLM.
An MCP (Model Context Protocol) server that exposes a collection of system prompts, summaries, and tool definitions from popular AI tools as MCP tools for AI coding environments like Cursor and Claude Desktop.
Why Use System Prompts MCP?
- 🔍 Automatic Discovery – Every prompt in
prompts/is automatically exposed as an MCP tool - 🎯 Model-Aware Suggestions – Get prompt recommendations based on your LLM (Claude, GPT, Gemini, etc.)
- 📚 Comprehensive Collection – Access prompts from Devin, Cursor, Claude, GPT, and more
- 🚀 Easy Setup – One-click install in Cursor or simple manual setup
- 🔧 Extensible – Add your own prompts and they're automatically available
Quick Start
Ready to explore system prompts? Install in seconds:
Install in Cursor (Recommended):
Or install manually:
npm install -g system-prompts-mcp-server
# Or from source:
git clone https://github.com/JamesANZ/system-prompts-and-models-of-ai-tools.git
cd system-prompts-and-models-of-ai-tools && npm install && npm run build
Features
Core Tools
list_prompts– Browse available prompts with filters (service, flavor, provider)get_prompt_suggestion– Get ranked prompt suggestions for your LLM and keywords<service>-<variant>-<flavor>– Direct access to any prompt (e.g.,cursor-agent-system,devin-summary)
Automatic Discovery
- Scans
prompts/directory for.txt,.md,.yaml,.yml,.jsonfiles - Each file becomes a dedicated MCP tool
- Infers metadata (service, variant, LLM family, persona hints)
Persona Activation
- Each tool call includes a reminder for the model to embody the loaded prompt
- Helps models behave like the original service (Devin, Cursor, etc.)
Installation
Cursor (One-Click)
Click the install link above or use:
cursor://anysphere.cursor-deeplink/mcp/install?name=system-prompts-mcp&config=eyJzeXN0ZW0tcHJvbXB0cy1tY3AiOnsiY29tbWFuZCI6Im5weCIsImFyZ3MiOlsiLXkiLCJzeXN0ZW0tcHJvbXB0cy1tY3Atc2VydmVyIl19fQ==
Manual Installation
Requirements: Node.js 18+ and npm
# Clone and build
git clone https://github.com/JamesANZ/system-prompts-and-models-of-ai-tools.git
cd system-prompts-and-models-of-ai-tools
npm install
npm run build
# Run server
npm start
Claude Desktop
Add to claude_desktop_config.json:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"system-prompts-mcp": {
"command": "node",
"args": ["/absolute/path/to/system-prompts-and-models-of-ai-tools/dist/index.js"],
"env": {
"PROMPT_LIBRARY_ROOT": "/absolute/path/to/system-prompts-and-models-of-ai-tools/prompts"
}
}
}
}
Restart Claude Desktop after configuration.
Usage Examples
List Available Prompts
Browse prompts with optional filters:
{
"tool": "list_prompts",
"arguments": {
"service": "cursor",
"flavor": "system",
"limit": 10
}
}
Get Prompt Suggestions
Find the best prompt for your LLM and use case:
{
"tool": "get_prompt_suggestion",
"arguments": {
"userLlm": "claude-3.5-sonnet",
"keywords": ["code", "pair programming"]
}
}
Access a Specific Prompt
Call a prompt directly by its tool name:
{
"tool": "cursor-agent-system",
"arguments": {}
}
Get structured metadata only:
{
"tool": "cursor-agent-system",
"arguments": {
"format": "json"
}
}
Adding Your Own Prompts
Add prompts by placing files in the prompts/ directory:
Supported formats: .txt, .md, .yaml, .yml, .json
Directory structure:
prompts/My Service/
├── System Prompt.txt → Tool: "my-service-system-prompt-system"
└── tools.json → Tool: "my-service-tools-tools"
- Directory names become the service name
- File names create tool variants
- Files are automatically classified as system prompts, tools, or summaries
After adding prompts, restart the MCP server. Use list_prompts to find your custom prompts.
Custom directory: Set PROMPT_LIBRARY_ROOT environment variable to use a different location.
Use Cases
- AI Tool Developers – Reference and adapt prompts from successful AI tools
- Researchers – Study how different tools structure their system prompts
- Developers – Find the perfect prompt for your LLM and use case
- Prompt Engineers – Compare and learn from proven prompt patterns
Technical Details
Built with: Node.js, TypeScript, MCP SDK
Dependencies: @modelcontextprotocol/sdk, zod
Platforms: macOS, Windows, Linux
Environment Variables:
PROMPT_LIBRARY_ROOT(optional): Override prompt root directory (defaults toprompts/)
Project Structure:
src/– TypeScript MCP server implementationdist/– Compiled JavaScriptprompts/– Prompt library and original documentation
Contributing
⭐ If this project helps you, please star it on GitHub! ⭐
Contributions welcome! Feel free to adapt the discovery logic, add tests, or extend metadata inference for new prompt formats.
License
See the original repository for license information.
Support
If you find this project useful, consider supporting it:
⚡ Lightning Network
lnbc1pjhhsqepp5mjgwnvg0z53shm22hfe9us289lnaqkwv8rn2s0rtekg5vvj56xnqdqqcqzzsxqyz5vqsp5gu6vh9hyp94c7t3tkpqrp2r059t4vrw7ps78a4n0a2u52678c7yq9qyyssq7zcferywka50wcy75skjfrdrk930cuyx24rg55cwfuzxs49rc9c53mpz6zug5y2544pt8y9jflnq0ltlha26ed846jh0y7n4gm8jd3qqaautqa
₿ Bitcoin: bc1ptzvr93pn959xq4et6sqzpfnkk2args22ewv5u2th4ps7hshfaqrshe0xtp
Ξ Ethereum/EVM: 0x42ea529282DDE0AA87B42d9E83316eb23FE62c3f
Related Servers
Canvas
Integrates with the Canvas Learning Management System (LMS), supporting FERPA-compliant anonymization and privacy controls.
Kit.com (formerly ConvertKit) MCP
Manage your email lists, subscribers, broadcasts, sequences, and more through natural language.
Docmost
An open-source collaborative wiki and documentation software with AI integration via MCP.
Canvas MCP Server
An MCP server for Canvas LMS, providing full functionality for both students and instructors.
Unreasonable Thinking Server
A tool for bold and unconventional problem-solving, generating unique solutions by branching and tracking thoughts.
n8n MCP Server
An MCP server for interacting with n8n workflows via natural language.
Todoist
Manage your Todoist tasks and projects using the Todoist Python API.
AtlaCP
An MCP interface for Atlassian products, including Jira and Bitbucket.
Jira MCP
The most robust Jira MCP safe for internal corporate use.
TickTick
Manage tasks, projects, and habits using the TickTick API.