cross-llm-mcp
A Model Context Protocol (MCP) server that provides access to multiple Large Language Model (LLM) APIs including ChatGPT, Claude, Gemini, and DeepSeek.
Cross-LLM MCP Server
A Model Context Protocol (MCP) server that provides access to multiple Large Language Model (LLM) APIs including ChatGPT, Claude, DeepSeek, Gemini, Grok, Kimi, Perplexity, and Mistral. This allows you to call different LLMs from within any MCP-compatible client and combine their responses.
Features
This MCP server offers eight specialized tools for interacting with different LLM providers:
š¤ Individual LLM Tools
call-chatgpt
Call OpenAI's ChatGPT API with a prompt.
Input:
prompt(string): The prompt to send to ChatGPTmodel(optional, string): ChatGPT model to use (default: gpt-4)temperature(optional, number): Temperature for response randomness (0-2, default: 0.7)max_tokens(optional, number): Maximum tokens in response (default: 1000)
Output:
- ChatGPT response with model information and token usage statistics
Example:
ChatGPT Response
Model: gpt-4
Here's a comprehensive explanation of quantum computing...
---
Usage:
- Prompt tokens: 15
- Completion tokens: 245
- Total tokens: 260
call-claude
Call Anthropic's Claude API with a prompt.
Input:
prompt(string): The prompt to send to Claudemodel(optional, string): Claude model to use (default: claude-3-sonnet-20240229)temperature(optional, number): Temperature for response randomness (0-1, default: 0.7)max_tokens(optional, number): Maximum tokens in response (default: 1000)
Output:
- Claude response with model information and token usage statistics
call-deepseek
Call DeepSeek API with a prompt.
Input:
prompt(string): The prompt to send to DeepSeekmodel(optional, string): DeepSeek model to use (default: deepseek-chat)temperature(optional, number): Temperature for response randomness (0-2, default: 0.7)max_tokens(optional, number): Maximum tokens in response (default: 1000)
Output:
- DeepSeek response with model information and token usage statistics
call-gemini
Call Google's Gemini API with a prompt.
Input:
prompt(string): The prompt to send to Geminimodel(optional, string): Gemini model to use (default: gemini-2.5-flash)temperature(optional, number): Temperature for response randomness (0-2, default: 0.7)max_tokens(optional, number): Maximum tokens in response (default: 1000)
Output:
- Gemini response with model information and token usage statistics
call-grok
Call xAI's Grok API with a prompt.
Input:
prompt(string): The prompt to send to Grokmodel(optional, string): Grok model to use (default: grok-3)temperature(optional, number): Temperature for response randomness (0-2, default: 0.7)max_tokens(optional, number): Maximum tokens in response (default: 1000)
Output:
- Grok response with model information and token usage statistics
call-kimi
Call Moonshot AI's Kimi API with a prompt.
Input:
prompt(string): The prompt to send to Kimimodel(optional, string): Kimi model to use (default: moonshot-v1-8k)temperature(optional, number): Temperature for response randomness (0-2, default: 0.7)max_tokens(optional, number): Maximum tokens in response (default: 1000)
Output:
- Kimi response with model information and token usage statistics
call-perplexity
Call Perplexity AI's API with a prompt.
Input:
prompt(string): The prompt to send to Perplexitymodel(optional, string): Perplexity model to use (default: sonar-pro)temperature(optional, number): Temperature for response randomness (0-2, default: 0.7)max_tokens(optional, number): Maximum tokens in response (default: 1000)
Output:
- Perplexity response with model information and token usage statistics
call-mistral
Call Mistral AI's API with a prompt.
Input:
prompt(string): The prompt to send to Mistralmodel(optional, string): Mistral model to use (default: mistral-large-latest)temperature(optional, number): Temperature for response randomness (0-2, default: 0.7)max_tokens(optional, number): Maximum tokens in response (default: 1000)
Output:
- Mistral response with model information and token usage statistics
š Combined Tools
call-all-llms
Call all available LLM APIs (ChatGPT, Claude, DeepSeek, Gemini, Grok, Kimi, Perplexity, Mistral) with the same prompt and get combined responses.
Input:
prompt(string): The prompt to send to all LLMstemperature(optional, number): Temperature for response randomness (0-2, default: 0.7)max_tokens(optional, number): Maximum tokens in response (default: 1000)
Output:
- Combined responses from all LLMs with individual model information and usage statistics
- Summary of successful responses and total tokens used
Example:
Multi-LLM Response
Prompt: Explain quantum computing in simple terms
---
## CHATGPT
Model: gpt-4
Quantum computing is like having a super-powered computer...
---
## CLAUDE
Model: claude-3-sonnet-20240229
Quantum computing represents a fundamental shift...
---
## DEEPSEEK
Model: deepseek-chat
Quantum computing harnesses the principles of quantum mechanics...
---
## GEMINI
Model: gemini-2.5-flash
Quantum computing is a revolutionary approach to computation...
---
Summary:
- Successful responses: 4/4
- Total tokens used: 1650
call-llm
Call a specific LLM provider by name.
Input:
provider(string): The LLM provider to call ("chatgpt", "claude", "deepseek", or "gemini")prompt(string): The prompt to send to the LLMmodel(optional, string): Model to use (uses provider default if not specified)temperature(optional, number): Temperature for response randomness (0-2, default: 0.7)max_tokens(optional, number): Maximum tokens in response (default: 1000)
Output:
- Response from the specified LLM with model information and usage statistics
Installation
- Clone this repository:
git clone <repository-url>
cd cross-llm-mcp
- Install dependencies:
npm install
- Build the project:
npm run build
Getting API Keys
OpenAI/ChatGPT
- Visit OpenAI Platform
- Sign up or log in to your account
- Create a new API key
- Add it to your
.envfile asOPENAI_API_KEY
Anthropic/Claude
- Visit Anthropic Console
- Sign up or log in to your account
- Create a new API key
- Add it to your
.envfile asANTHROPIC_API_KEY
DeepSeek
- Visit DeepSeek Platform
- Sign up or log in to your account
- Create a new API key
- Add it to your
.envfile asDEEPSEEK_API_KEY
Google Gemini
- Visit Google AI Studio
- Sign up or log in to your Google account
- Create a new API key
- Add it to your Claude Desktop configuration as
GEMINI_API_KEY
xAI/Grok
- Visit xAI Platform
- Sign up or log in to your account
- Create a new API key
- Add it to your Claude Desktop configuration as
XAI_API_KEY
Moonshot AI/Kimi
- Visit Moonshot AI Platform
- Sign up or log in to your account
- Create a new API key
- Add it to your Claude Desktop configuration as
KIMI_API_KEY
Perplexity AI
- Visit the Perplexity AI Platform
- Sign up or log in to your account
- Generate a new API key from the developer console
- Add it to your Claude Desktop configuration as
PERPLEXITY_API_KEY
Mistral AI
- Visit the Mistral AI Console
- Sign up or log in to your account
- Create a new API key
- Add it to your Claude Desktop configuration as
MISTRAL_API_KEY
Usage
Configuring Claude Desktop
Add the following configuration to your Claude Desktop MCP settings:
{
"cross-llm-mcp": {
"command": "node",
"args": ["/path/to/your/cross-llm-mcp/build/index.js"],
"cwd": "/path/to/your/cross-llm-mcp",
"env": {
"OPENAI_API_KEY": "your_openai_api_key_here",
"ANTHROPIC_API_KEY": "your_anthropic_api_key_here",
"DEEPSEEK_API_KEY": "your_deepseek_api_key_here",
"GEMINI_API_KEY": "your_gemini_api_key_here",
"XAI_API_KEY": "your_grok_api_key_here",
"KIMI_API_KEY": "your_kimi_api_key_here",
"PERPLEXITY_API_KEY": "your_perplexity_api_key_here",
"MISTRAL_API_KEY": "your_mistral_api_key_here"
}
}
}
Replace the paths and API keys with your actual values:
- Update the
argspath to point to yourbuild/index.jsfile - Update the
cwdpath to your project directory - Add your actual API keys to the
envsection
Running the Server
The server runs automatically when configured in Claude Desktop. You can also run it manually:
npm start
The server runs on stdio and can be connected to any MCP-compatible client.
Example Queries
Here are some example queries you can make with this MCP server:
Call ChatGPT
{
"tool": "call-chatgpt",
"arguments": {
"prompt": "Explain quantum computing in simple terms",
"temperature": 0.7,
"max_tokens": 500
}
}
Call Claude
{
"tool": "call-claude",
"arguments": {
"prompt": "What are the benefits of renewable energy?",
"model": "claude-3-sonnet-20240229"
}
}
Call All LLMs
{
"tool": "call-all-llms",
"arguments": {
"prompt": "Write a short poem about artificial intelligence",
"temperature": 0.8
}
}
Call Specific LLM
{
"tool": "call-llm",
"arguments": {
"provider": "deepseek",
"prompt": "Explain machine learning algorithms",
"max_tokens": 800
}
}
Call Gemini
{
"tool": "call-gemini",
"arguments": {
"prompt": "Write a creative story about AI",
"model": "gemini-2.5-flash",
"temperature": 0.9
}
}
Call Grok
{
"tool": "call-grok",
"arguments": {
"prompt": "Tell me a joke about programming",
"model": "grok-3",
"temperature": 0.8
}
}
Call Kimi
{
"tool": "call-kimi",
"arguments": {
"prompt": "Summarise the plot of The Matrix in two sentences",
"model": "moonshot-v1-8k",
"temperature": 0.7
}
}
Call Perplexity
{
"tool": "call-perplexity",
"arguments": {
"prompt": "Summarize the latest AI research highlights in two paragraphs",
"model": "sonar-medium-online",
"temperature": 0.6
}
}
Call Mistral
{
"tool": "call-mistral",
"arguments": {
"prompt": "Draft a concise product update for stakeholders",
"model": "mistral-large-latest",
"temperature": 0.7
}
}
Use Cases
1. Multi-Perspective Analysis
Use call-all-llms to get different perspectives on the same topic from multiple AI models.
2. Model Comparison
Compare responses from different LLMs to understand their strengths and weaknesses.
3. Redundancy and Reliability
If one LLM is unavailable, you can still get responses from other providers.
4. Cost Optimization
Choose the most cost-effective LLM for your specific use case.
5. Quality Assurance
Cross-reference responses from multiple models to validate information.
Configuration
Claude Desktop Setup
The recommended way to use this MCP server is through Claude Desktop with environment variables configured directly in the MCP settings:
{
"cross-llm-mcp": {
"command": "node",
"args": [
"/Users/jamessangalli/Documents/projects/cross-llm-mcp/build/index.js"
],
"cwd": "/Users/jamessangalli/Documents/projects/cross-llm-mcp",
"env": {
"OPENAI_API_KEY": "sk-proj-your-openai-key-here",
"ANTHROPIC_API_KEY": "sk-ant-your-anthropic-key-here",
"DEEPSEEK_API_KEY": "sk-your-deepseek-key-here",
"GEMINI_API_KEY": "your-gemini-api-key-here"
}
}
}
Environment Variables
The server reads the following environment variables:
OPENAI_API_KEY: Your OpenAI API keyANTHROPIC_API_KEY: Your Anthropic API keyDEEPSEEK_API_KEY: Your DeepSeek API keyGEMINI_API_KEY: Your Google Gemini API keyXAI_API_KEY: Your xAI Grok API keyKIMI_API_KEY: Your Moonshot AI Kimi API keyPERPLEXITY_API_KEY: Your Perplexity AI API keyMISTRAL_API_KEY: Your Mistral AI API keyDEFAULT_CHATGPT_MODEL: Default ChatGPT model (default: gpt-4)DEFAULT_CLAUDE_MODEL: Default Claude model (default: claude-3-sonnet-20240229)DEFAULT_DEEPSEEK_MODEL: Default DeepSeek model (default: deepseek-chat)DEFAULT_GEMINI_MODEL: Default Gemini model (default: gemini-2.5-flash)DEFAULT_GROK_MODEL: Default Grok model (default: grok-3)DEFAULT_KIMI_MODEL: Default Kimi model (default: moonshot-v1-8k)DEFAULT_PERPLEXITY_MODEL: Default Perplexity model (default: sonar-pro)DEFAULT_MISTRAL_MODEL: Default Mistral model (default: mistral-large-latest)
API Endpoints
This MCP server uses the following API endpoints:
- OpenAI:
https://api.openai.com/v1/chat/completions - Anthropic:
https://api.anthropic.com/v1/messages - DeepSeek:
https://api.deepseek.com/v1/chat/completions - Google Gemini:
https://generativelanguage.googleapis.com/v1/models/{model}:generateContent - xAI Grok:
https://api.x.ai/v1/chat/completions - Moonshot AI Kimi:
https://api.moonshot.ai/v1/chat/completions - Perplexity AI:
https://api.perplexity.ai/chat/completions - Mistral AI:
https://api.mistral.ai/v1/chat/completions
Error Handling
The server includes comprehensive error handling with detailed messages:
Missing API Key
**ChatGPT Error:** OpenAI API key not configured
Invalid API Key
**Claude Error:** Claude API error: Invalid API key - please check your Anthropic API key
Rate Limiting
**DeepSeek Error:** DeepSeek API error: Rate limit exceeded - please try again later
Payment Issues
**ChatGPT Error:** ChatGPT API error: Payment required - please check your OpenAI billing
Network Issues
**Claude Error:** Claude API error: Network timeout
Supported Models
ChatGPT Models
gpt-4gpt-4-turbogpt-3.5-turbo- And other OpenAI models
Claude Models
claude-3-sonnet-20240229claude-3-opus-20240229claude-3-haiku-20240307- And other Anthropic models
DeepSeek Models
deepseek-chatdeepseek-coder- And other DeepSeek models
Gemini Models
gemini-2.5-flash(default)gemini-2.5-progemini-2.0-flashgemini-2.0-flash-001- And other Google Gemini models
Grok Models
grok-3(default)- And other xAI Grok models
Kimi Models
moonshot-v1-8k(default)moonshot-v1-32kmoonshot-v1-128k- And other Moonshot AI Kimi models
Perplexity Models
sonar-pro(default)sonar-small-onlinesonar-medium- And other Perplexity models
Mistral Models
mistral-large-latest(default)mistral-small-latestmixtral-8x7b-32768- And other Mistral models
Project Structure
cross-llm-mcp/
āāā src/
ā āāā index.ts # Main MCP server with all 8 tools
ā āāā types.ts # TypeScript type definitions
ā āāā llm-clients.ts # LLM API client implementations
āāā build/ # Compiled JavaScript output
āāā env.example # Environment variables template
āāā example-usage.md # Detailed usage examples
āāā package.json # Project dependencies and scripts
āāā README.md # This file
Dependencies
@modelcontextprotocol/sdk- MCP SDK for server implementationsuperagent- HTTP client for API requestszod- Schema validation for tool parameters
Development
Building the Project
npm run build
Adding New LLM Providers
To add a new LLM provider:
- Add the provider type to
src/types.ts - Implement the client in
src/llm-clients.ts - Add the tool to
src/index.ts - Update the
callAllLLMsmethod to include the new provider
Troubleshooting
Common Issues
Server won't start
- Check that all dependencies are installed:
npm install - Verify the build was successful:
npm run build - Ensure the
.envfile exists and has valid API keys
API errors
- Verify your API keys are correct and active
- Check your API usage limits and billing status
- Ensure you're using supported model names
No responses
- Check that at least one API key is configured
- Verify network connectivity
- Look for error messages in the response
Debug Mode
For debugging, you can run the server directly:
node build/index.js
License
This project is licensed under the MIT License - see the LICENSE.md file for details.
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Support
If you encounter any issues or have questions, please:
- Check the troubleshooting section above
- Review the error messages for specific guidance
- Ensure your API keys are properly configured
- Verify your network connectivity
Related Servers
VisiData MCP Server
Interact with VisiData, a terminal spreadsheet multitool for discovering and arranging tabular data in various formats like CSV, JSON, and Excel.
Jira
An MCP server for interacting with Jira's REST API to manage projects, issues, and users.
Freshdesk
Integrates with Freshdesk to manage support tickets, contacts, and other customer service operations.
Monday.com
Interact with Monday.com boards, items, updates, and documents.
laundry-timer-mcp
A laundry planning assistant that uses preferences and real-time weather forecasts.
Todoist
Manage Todoist projects, sections, tasks, and labels using natural language with AI assistants.
DeepWriter
Interact with the DeepWriter API, an AI-powered writing assistant.
Agile Luminary
Connects AI clients to the Agile Luminary project management system via its REST API.
Plane MCP Server
Manage projects and issues on the open-source project management platform, Plane.so.
TeamRetro
Integrate with TeamRetro for team management and analytics.