BigQuery
Server implementation for Google BigQuery integration that enables direct BigQuery database access and querying capabilities
BigQuery MCP Server
What is this? π€
This is a server that lets your LLMs (like Claude) talk directly to your BigQuery data! Think of it as a friendly translator that sits between your AI assistant and your database, making sure they can chat securely and efficiently.
Quick Example
You: "What were our top 10 customers last month?"
Claude: *queries your BigQuery database and gives you the answer in plain English*
No more writing SQL queries by hand - just chat naturally with your data!
How Does It Work? π οΈ
This server uses the Model Context Protocol (MCP), which is like a universal translator for AI-database communication. While MCP is designed to work with any AI model, right now it's available as a developer preview in Claude Desktop.
Here's all you need to do:
- Set up authentication (see below)
- Add your project details to Claude Desktop's config file
- Start chatting with your BigQuery data naturally!
What Can It Do? π
- Run SQL queries by just asking questions in plain English
- Access both tables and materialized views in your datasets
- Explore dataset schemas with clear labeling of resource types (tables vs views)
- Analyze data within safe limits (1GB query limit by default)
- Keep your data secure (read-only access)
Quick Start π
Prerequisites
- Node.js 14 or higher
- Google Cloud project with BigQuery enabled
- Either Google Cloud CLI installed or a service account key file
- Claude Desktop (currently the only supported LLM interface)
Option 1: Quick Install via Smithery (Recommended)
To install BigQuery MCP Server for Claude Desktop automatically via Smithery, run this command in your terminal:
npx @smithery/cli install @ergut/mcp-bigquery-server --client claude
The installer will prompt you for:
- Your Google Cloud project ID
- BigQuery location (defaults to us-central1)
Once configured, Smithery will automatically update your Claude Desktop configuration and restart the application.
Option 2: Manual Setup
If you prefer manual configuration or need more control:
-
Authenticate with Google Cloud (choose one method):
- Using Google Cloud CLI (great for development):
gcloud auth application-default login - Using a service account (recommended for production):
# Save your service account key file and use --key-file parameter # Remember to keep your service account key file secure and never commit it to version control
- Using Google Cloud CLI (great for development):
-
Add to your Claude Desktop config Add this to your
claude_desktop_config.json:-
Basic configuration:
{ "mcpServers": { "bigquery": { "command": "npx", "args": [ "-y", "@ergut/mcp-bigquery-server", "--project-id", "your-project-id", "--location", "us-central1" ] } } } -
With service account:
{ "mcpServers": { "bigquery": { "command": "npx", "args": [ "-y", "@ergut/mcp-bigquery-server", "--project-id", "your-project-id", "--location", "us-central1", "--key-file", "/path/to/service-account-key.json" ] } } }
-
-
Start chatting! Open Claude Desktop and start asking questions about your data.
Command Line Arguments
The server accepts the following arguments:
--project-id: (Required) Your Google Cloud project ID--location: (Optional) BigQuery location, defaults to 'us-central1'--key-file: (Optional) Path to service account key JSON file
Example using service account:
npx @ergut/mcp-bigquery-server --project-id your-project-id --location europe-west1 --key-file /path/to/key.json
Permissions Needed
You'll need one of these:
roles/bigquery.user(recommended)- OR both:
roles/bigquery.dataViewerroles/bigquery.jobUser
Developer Setup (Optional) π§
Want to customize or contribute? Here's how to set it up locally:
# Clone and install
git clone https://github.com/ergut/mcp-bigquery-server
cd mcp-bigquery-server
npm install
# Build
npm run build
Then update your Claude Desktop config to point to your local build:
{
"mcpServers": {
"bigquery": {
"command": "node",
"args": [
"/path/to/your/clone/mcp-bigquery-server/dist/index.js",
"--project-id",
"your-project-id",
"--location",
"us-central1",
"--key-file",
"/path/to/service-account-key.json"
]
}
}
}
Current Limitations β οΈ
- MCP support is currently only available in Claude Desktop (developer preview)
- Connections are limited to local MCP servers running on the same machine
- Queries are read-only with a 1GB processing limit
- While both tables and views are supported, some complex view types might have limitations
Support & Resources π¬
- π Report issues
- π‘ Feature requests
- π Documentation
License π
MIT License - See LICENSE file for details.
Author βοΈ
Salih ErgΓΌt
Sponsorship
This project is proudly sponsored by:
Version History π
See CHANGELOG.md for updates and version history.
Related Servers
MCP Memory Toolkit
Provides persistent memory for Claude using ChromaDB for semantic search and storage.
CData WooCommerce
A read-only MCP server for querying live WooCommerce data using the CData JDBC Driver.
MCP Trino Server
Integrates with Trino and Iceberg for advanced data exploration, querying, and table maintenance.
Google Analytics MCP Server by CData
A read-only MCP server for querying live Google Analytics data using LLMs. Powered by CData.
PostgreSQL Full Access MCP Server
A full-access PostgreSQL server for MCP with read/write capabilities and enhanced schema metadata.
MLB SportRadar
Access MLB game data, standings, and player statistics using the SportRadar API.
1C Metadata
Obtain 1C configuration metadata via an external 1C HTTP service.
JDBC Explorer
A server that enables LLMs to connect and interact with databases via JDBC, built using the Spring AI MCP framework.
AlibabaCloud DMS MCP Server
An AI-powered gateway for managing over 40 data sources like Alibaba Cloud and mainstream databases, featuring NL2SQL, code generation, and data migration.
Teradata MCP Server
Interact with Teradata databases for data queries and business intelligence.