Graph Tools
An interactive graph analysis toolkit with web visualizations and AI-powered analysis capabilities.
Graph Tools - Interactive Graph Analysis Toolkit
A comprehensive Ruby-based graph analysis toolkit with web visualizations and MCP server for AI-powered graph analysis.
š Features
Core Graph Operations
- Adjacency Matrix Support - Load from CSV, JSON, or TXT files
- Graph Algorithms - DFS, BFS, neighbor finding with visual feedback
- Multiple Export Formats - CSV matrices, JSON, interactive HTML
- Command Line Interface - Full-featured CLI for batch operations
Interactive Visualizations
- Enhanced Graph Visualizer - D3.js force-directed layouts with real-time interactions
- Algorithm Visualization - Visual highlighting for DFS/BFS traversals
- Interactive Editing - Add/remove nodes and edges with drag-and-drop
- Matrix Export - Custom filename support for adjacency matrix downloads
- Graph Statistics - Real-time node count, edge count, and density calculations
AI Integration
- MCP Server - HTTP REST API and Claude Desktop MCP server
- Automatic Visualization - Generate interactive graphs from structured data
- Smart Data Processing - Extract relationships from various data formats
- Centrality Analysis - Calculate degree, betweenness, closeness, eigenvector centrality
š¦ Installation
Prerequisites
- Ruby 2.7+ - Core graph operations
- Node.js 16+ - MCP server functionality
- Modern web browser - For interactive visualizations
Setup
git clone https://github.com/dromologue/Graph-Tools.git
cd Graph-Tools
# For local CLI usage
gem install
# Install MCP server dependencies
cd mcp-graph-server
npm install
cd ..
# For web application
npm install
š§ Usage
Command Line Interface
# Basic graph visualization
ruby graph_cli.rb matrix.csv
# With custom vertex labels
ruby graph_cli.rb -v "A,B,C,D" matrix.csv
# Run graph algorithms
ruby graph_cli.rb --dfs A --bfs B matrix.csv
# Export to web visualization
ruby graph_cli.rb -d matrix.csv
# Export to JSON
ruby graph_cli.rb -j output.json matrix.csv
Interactive Visualizer
Local Usage:
- Open
Files/enhanced-graph-visualizer.html
in your browser - Load sample data or create your own graph
- Run DFS/BFS operations with visual highlighting
- Export matrices with custom filenames
Web Application:
- Run
npm start
and visithttp://localhost:3000
- Upload matrix files via drag-and-drop
- Try sample data for quick testing
- Get real-time analysis results
MCP Server Integration
HTTP REST API Mode
cd mcp-graph-server
npm run api
# Server runs on http://localhost:3001
Claude Desktop Mode
- Configure Claude Desktop (
~/Library/Application Support/Claude/claude_desktop_config.json
):
{
"mcpServers": {
"graph-server": {
"command": "node",
"args": ["/path/to/Graph-Tools/mcp-graph-server/api-server.js"],
"env": {
"SERVER_MODE": "mcp"
}
}
}
}
- Use natural language in Claude Desktop:
Analyze these relationships and create a graph visualization:
[
{"id": "Alice", "friends": ["Bob", "Carol"]},
{"id": "Bob", "friends": ["Alice", "David"]},
{"id": "Carol", "friends": ["Alice"]},
{"id": "David", "friends": ["Bob"]}
]
š Project Structure
Graph-Tools/
āāā graph.rb # Core Graph class
āāā graph_cli.rb # Command line interface
āāā server.js # Web application server
āāā Files/ # Visualization files directory
ā āāā enhanced-graph-visualizer.html # Interactive D3.js visualizer
āāā public/ # Web application files
ā āāā index.html # Main web interface
ā āāā mcp-documentation.html # API documentation
āāā mcp-graph-server/ # MCP server
ā āāā api-server.js # Dual-mode MCP/HTTP server
ā āāā index.js # Original MCP server
ā āāā package.json # Node.js dependencies
ā āāā claude-config-example.json # Claude Desktop config example
ā āāā data/ # Generated files (matrices, visualizations)
āāā Gemfile # Ruby dependencies
āāā package.json # Node.js web server dependencies
āāā README.md # This file
API Endpoints
The MCP server provides both MCP protocol and HTTP REST API:
POST /api/analyze-relationships
- Extract relationships from dataPOST /api/create-adjacency-matrix
- Build matrices from relationship pairsPOST /api/calculate-centrality
- Compute network centrality measuresPOST /api/analyze-network-structure
- Comprehensive network analysisGET /health
- Health check endpoint
See /mcp-documentation.html
for complete API documentation with examples.
Quick Start
1. Create a Graph Visually
# Open the Enhanced Graph Visualizer
open "Files/enhanced-graph-visualizer.html"
In the enhanced visualizer:
- Add vertices by typing names and clicking "Add Node"
- Click two nodes to select them, then click "Add Edge"
- Drag nodes to reposition them
- Run DFS/BFS operations and see visual highlights
- Export as CSV matrix when done
2. Analyze Your Graph
# Basic analysis
ruby graph_cli.rb your_graph.csv
# With custom vertex names
ruby graph_cli.rb -v "Alice,Bob,Carol,David" your_graph.csv
# Specific operations
ruby graph_cli.rb -v "Alice,Bob,Carol,David" --dfs Alice your_graph.csv
ruby graph_cli.rb -v "Alice,Bob,Carol,David" --bfs Bob your_graph.csv
ruby graph_cli.rb -v "Alice,Bob,Carol,David" --neighbors Carol your_graph.csv
3. Export for Visualization
# Export for D3.js editor (interactive)
ruby graph_cli.rb -v "Alice,Bob,Carol,David" -d your_graph.csv
# Export JSON for programmatic use
ruby graph_cli.rb -v "Alice,Bob,Carol,David" -j output.json your_graph.csv
Command Reference
CLI Options
ruby graph_cli.rb [options] matrix_file
Options:
-v, --vertices LABELS # Comma-separated vertex labels
-f, --format FORMAT # Output format (text, matrix, json)
-j, --export-json FILE # Export to JSON file
-d, --d3 # Export for D3.js visualization
--dfs VERTEX # Perform DFS traversal
--bfs VERTEX # Perform BFS traversal
--neighbors VERTEX # Show neighbors
--path FROM,TO # Check edge existence
Supported File Formats
- CSV:
0,1,0\n1,0,1\n0,1,0
- TXT:
0 1 0\n1 0 1\n0 1 0
(space-separated) - JSON:
{"matrix": [[0,1,0],[1,0,1],[0,1,0]]}
MCP Server Tools
The MCP server provides these tools for AI assistants:
analyze_relationships
- Extract relationships from structured data and create visualizationscreate_adjacency_matrix
- Build matrices from relationship pairscalculate_centrality
- Compute network centrality measures (degree, betweenness, closeness, eigenvector)analyze_network_structure
- Comprehensive network analysis combining relationship extraction and centrality
Performance
- Graph creation: Sub-second for graphs up to 100 nodes
- DFS/BFS: Linear time complexity O(V + E)
- Visualization: Handles 50+ nodes smoothly in D3.js
- File formats: All formats (CSV, JSON, TXT) supported efficiently
- HTTP API: Fast response times for network analysis
Error Handling
The tools provide comprehensive error handling for:
- Invalid matrix formats
- Non-existent vertices in operations
- Malformed input files
- Missing dependencies
- API validation errors
Contributing
The codebase follows clean architecture principles with separation of concerns:
- Core graph operations in Ruby
- Web interface with modern JavaScript
- MCP server for AI integration
- Comprehensive API documentation
Related Servers
Cloudflare MCP Server
An example MCP server designed for easy deployment on Cloudflare Workers, operating without authentication.
TemplateIO Image Generation
Generate images using the Templated.io API. Requires a Templated.io API key.
Synth MCP
Access financial data like stock prices, currency info, and insider trading data using the Synth Finance API.
JADX-AI-MCP
A JADX decompiler plugin that integrates with MCP to provide live reverse engineering support using LLMs.
D2 MCP Server
Generate, render, and manipulate D2 diagrams with incremental editing capabilities.
NmapMCP
Integrates the Nmap network scanning tool with MCP, enabling network scanning capabilities within MCP-compatible environments.
Postman Tool Generation
Generates AI agent tools from Postman collections and requests using the Postman API.
Phone
Control your Android phone using ADB commands. Requires ADB tools and an Android device with USB debugging enabled.
Codesys-mcp-toolkit
A Model Context Protocol (MCP) server for CODESYS V3 programming environments.
Autodocument
Automatically generates documentation for code repositories by analyzing directory structures and code files using the OpenRouter API.