Dataproc MCP Server
An MCP server for managing Google Cloud Dataproc operations and big data workflows, with seamless integration for VS Code.
Dataproc MCP Server
A production-ready Model Context Protocol (MCP) server for Google Cloud Dataproc operations with intelligent parameter injection, enterprise-grade security, and comprehensive tooling. Designed for seamless integration with Roo (VS Code).
π Quick Start
Recommended: Roo (VS Code) Integration
Add this to your Roo MCP settings:
{
"mcpServers": {
"dataproc": {
"command": "npx",
"args": ["@dipseth/dataproc-mcp-server@latest"],
"env": {
"LOG_LEVEL": "info"
}
}
}
}
With Custom Config File
{
"mcpServers": {
"dataproc": {
"command": "npx",
"args": ["@dipseth/dataproc-mcp-server@latest"],
"env": {
"LOG_LEVEL": "info",
"DATAPROC_CONFIG_PATH": "/path/to/your/config.json"
}
}
}
}
Alternative: Global Installation
# Install globally
npm install -g @dipseth/dataproc-mcp-server
# Start the server
dataproc-mcp-server
# Or run directly
npx @dipseth/dataproc-mcp-server@latest
5-Minute Setup
-
Install the package:
npm install -g @dipseth/dataproc-mcp-server@latest -
Run the setup:
dataproc-mcp --setup -
Configure authentication:
# Edit the generated config file nano config/server.json -
Start the server:
dataproc-mcp
π Claude.ai Web App Compatibility
β PRODUCTION-READY: Full Claude.ai Integration with HTTPS Tunneling & OAuth
The Dataproc MCP Server now provides complete Claude.ai web app compatibility with a working solution that includes all 22 MCP tools!
π Working Solution (Tested & Verified)
Terminal 1 - Start MCP Server:
DATAPROC_CONFIG_PATH=config/github-oauth-server.json npm start -- --http --oauth --port 8080
Terminal 2 - Start Cloudflare Tunnel:
cloudflared tunnel --url https://localhost:8443 --origin-server-name localhost --no-tls-verify
Result: Claude.ai can see and use all tools successfully! π
Key Features:
- β Complete Tool Access - All 22 MCP tools available in Claude.ai
- β HTTPS Tunneling - Cloudflare tunnel for secure external access
- β OAuth Authentication - GitHub OAuth for secure authentication
- β Trusted Certificates - No browser warnings or connection issues
- β WebSocket Support - Full WebSocket compatibility with Claude.ai
- β Production Ready - Tested and verified working solution
Quick Setup:
- Setup GitHub OAuth (5 minutes)
- Generate SSL certificates:
npm run ssl:generate - Start services (2 terminals as shown above)
- Connect Claude.ai to your tunnel URL
π Complete Guide: See
docs/claude-ai-integration.mdfor detailed setup instructions, troubleshooting, and advanced features.
π Certificate Setup: See
docs/trusted-certificates.mdfor SSL certificate configuration.
β¨ Features
π― Core Capabilities
- 22 Production-Ready MCP Tools - Complete Dataproc management suite
- π§ Knowledge Base Semantic Search - Natural language queries with optional Qdrant integration
- π Response Optimization - 60-96% token reduction with Qdrant storage
- π Generic Type Conversion System - Automatic, type-safe data transformations
- 60-80% Parameter Reduction - Intelligent default injection
- Multi-Environment Support - Dev/staging/production configurations
- Service Account Impersonation - Enterprise authentication
- Real-time Job Monitoring - Comprehensive status tracking
π Response Optimization
- 96.2% Token Reduction -
list_clusters: 7,651 β 292 tokens - Automatic Qdrant Storage - Full data preserved and searchable
- Resource URI Access -
dataproc://responses/clusters/list/abc123 - Graceful Fallback - Works without Qdrant, falls back to full responses
- 9.95ms Processing - Lightning-fast optimization with <1MB memory usage
π Generic Type Conversion System
- 75% Code Reduction - Eliminates manual conversion logic across services
- Type-Safe Transformations - Automatic field detection and mapping
- Intelligent Compression - Field-level compression with configurable thresholds
- 0.50ms Conversion Times - Lightning-fast processing with 100% compression ratios
- Zero-Configuration - Works automatically with existing TypeScript types
- Backward Compatible - Seamless integration with existing functionality
οΏ½ Enterprise Security
- Input Validation - Zod schemas for all 16 tools
- Rate Limiting - Configurable abuse prevention
- Credential Management - Secure handling and rotation
- Audit Logging - Comprehensive security event tracking
- Threat Detection - Injection attack prevention
π Quality Assurance
- 90%+ Test Coverage - Comprehensive test suite
- Performance Monitoring - Configurable thresholds
- Multi-Environment Testing - Cross-platform validation
- Automated Quality Gates - CI/CD integration
- Security Scanning - Vulnerability management
π Developer Experience
- 5-Minute Setup - Quick start guide
- Interactive Documentation - HTML docs with examples
- Comprehensive Examples - Multi-environment configs
- Troubleshooting Guides - Common issues and solutions
- IDE Integration - TypeScript support
π οΈ Complete MCP Tools Suite (22 Tools)
π Enhanced with Generic Type Conversion: All tools now benefit from automatic, type-safe data transformations with intelligent compression and field mapping.
π Cluster Management (8 Tools)
| Tool | Description | Smart Defaults | Key Features |
|---|---|---|---|
start_dataproc_cluster | Create and start new clusters | β 80% fewer params | Profile-based, auto-config |
create_cluster_from_yaml | Create from YAML configuration | β Project/region injection | Template-driven setup |
create_cluster_from_profile | Create using predefined profiles | β 85% fewer params | 8 built-in profiles |
list_clusters | List all clusters with filtering | β No params needed | Semantic queries, pagination |
list_tracked_clusters | List MCP-created clusters | β Profile filtering | Creation tracking |
get_cluster | Get detailed cluster information | β 75% fewer params | Semantic data extraction |
delete_cluster | Delete existing clusters | β Project/region defaults | Safe deletion |
get_zeppelin_url | Get Zeppelin notebook URL | β Auto-discovery | Web interface access |
πΌ Job Management (7 Tools)
| Tool | Description | Smart Defaults | Key Features |
|---|---|---|---|
submit_hive_query | Submit Hive queries to clusters | β 70% fewer params | Async support, timeouts |
submit_dataproc_job | Submit Spark/PySpark/Presto jobs | β 75% fewer params | Multi-engine support, Local file staging |
cancel_dataproc_job | Cancel running or pending jobs | β JobID only needed | Emergency cancellation, cost control |
get_job_status | Get job execution status | β JobID only needed | Real-time monitoring |
get_job_results | Get job outputs and results | β Auto-pagination | Result formatting |
get_query_status | Get Hive query status | β Minimal params | Query tracking |
get_query_results | Get Hive query results | β Smart pagination | Enhanced async support |
π Configuration & Profiles (3 Tools)
| Tool | Description | Smart Defaults | Key Features |
|---|---|---|---|
list_profiles | List available cluster profiles | β Category filtering | 8 production profiles |
get_profile | Get detailed profile configuration | β Profile ID only | Template access |
query_cluster_data | Query stored cluster data | β Natural language | Semantic search |
π Analytics & Insights (4 Tools)
| Tool | Description | Smart Defaults | Key Features |
|---|---|---|---|
check_active_jobs | Quick status of all active jobs | β No params needed | Multi-project view |
get_cluster_insights | Comprehensive cluster analytics | β Auto-discovery | Machine types, components |
get_job_analytics | Job performance analytics | β Success rates | Error patterns, metrics |
query_knowledge | Query comprehensive knowledge base | β Natural language | Clusters, jobs, errors |
π― Key Capabilities
- π§ Semantic Search: Natural language queries with Qdrant integration
- β‘ Smart Defaults: 60-80% parameter reduction through intelligent injection
- π Response Optimization: 96% token reduction with full data preservation
- π Async Support: Non-blocking job submission and monitoring
- π·οΈ Profile System: 8 production-ready cluster templates
- π Analytics: Comprehensive insights and performance tracking
π Configuration
Project-Based Configuration
The server supports a project-based configuration format:
# profiles/@analytics-workloads.yaml
my-company-analytics-prod-1234:
region: us-central1
tags:
- DataProc
- analytics
- production
labels:
service: analytics-service
owner: data-team
environment: production
cluster_config:
# ... cluster configuration
Authentication Methods
- Service Account Impersonation (Recommended)
- Direct Service Account Key
- Application Default Credentials
- Hybrid Authentication with fallbacks
π Documentation
- Quick Start Guide - Get started in 5 minutes
- Knowledge Base Semantic Search - Natural language queries and setup
- Generic Type Conversion System - Architectural design and implementation
- Generic Converter Migration Guide - Migration from manual conversions
- API Reference - Complete tool documentation
- Configuration Examples - Real-world configurations
- Security Guide - Best practices and compliance
- Installation Guide - Detailed setup instructions
π§ MCP Client Integration
Claude Desktop
{
"mcpServers": {
"dataproc": {
"command": "npx",
"args": ["@dataproc/mcp-server"],
"env": {
"LOG_LEVEL": "info"
}
}
}
}
Roo (VS Code)
{
"mcpServers": {
"dataproc-server": {
"command": "npx",
"args": ["@dataproc/mcp-server"],
"disabled": false,
"alwaysAllow": [
"list_clusters",
"get_cluster",
"list_profiles"
]
}
}
}
ποΈ Architecture
βββββββββββββββββββ ββββββββββββββββββββ βββββββββββββββββββ
β MCP Client ββββββ Dataproc MCP ββββββ Google Cloud β
β (Claude/Roo) β β Server β β Dataproc β
βββββββββββββββββββ ββββββββββββββββββββ βββββββββββββββββββ
β
ββββββββ΄βββββββ
β Features β
βββββββββββββββ€
β β’ Security β
β β’ Profiles β
β β’ Validationβ
β β’ Monitoringβ
β β’ Generic β
β Converter β
βββββββββββββββ
π Generic Type Conversion System Architecture
βββββββββββββββββββ ββββββββββββββββββββ βββββββββββββββββββ
β Source Types ββββββ Generic Converter ββββββ Qdrant Payloads β
β β’ ClusterData β β System β β β’ Compressed β
β β’ QueryResults β β β β β’ Type-Safe β
β β’ JobData β β ββββββββββββββββ β β β’ Optimized β
βββββββββββββββββββ β βField Analyzerβ β βββββββββββββββββββ
β βTransformationβ β
β βEngine β β
β βCompression β β
β βService β β
β ββββββββββββββββ β
ββββββββββββββββββββ
π¦ Performance
Response Time Achievements
- Schema Validation: ~2ms (target: <5ms) β
- Parameter Injection: ~1ms (target: <2ms) β
- Generic Type Conversion: ~0.50ms (target: <2ms) β
- Credential Validation: ~25ms (target: <50ms) β
- MCP Tool Call: ~50ms (target: <100ms) β
Throughput Achievements
- Schema Validation: ~2000 ops/sec β
- Parameter Injection: ~5000 ops/sec β
- Generic Type Conversion: ~2000 ops/sec β
- Credential Validation: ~200 ops/sec β
- MCP Tool Call: ~100 ops/sec β
Compression Achievements
- Field-Level Compression: Up to 100% compression ratios β
- Memory Optimization: 30-60% reduction in memory usage β
- Type Safety: Zero runtime type errors with automatic validation β
π§ͺ Testing
# Run all tests
npm test
# Run specific test suites
npm run test:unit
npm run test:integration
npm run test:performance
# Run with coverage
npm run test:coverage
π€ Contributing
We welcome contributions! Please see our Contributing Guide for details.
Development Setup
# Clone the repository
git clone https://github.com/dipseth/dataproc-mcp.git
cd dataproc-mcp
# Install dependencies
npm install
# Build the project
npm run build
# Run tests
npm test
# Start development server
npm run dev
π License
This project is licensed under the MIT License - see the LICENSE file for details.
π Support
- GitHub Issues: Report bugs and request features
- Documentation: Complete documentation
- NPM Package: Package information
π Acknowledgments
- Model Context Protocol - The protocol that makes this possible
- Google Cloud Dataproc - The service we're integrating with
- Qdrant - High-performance vector database powering our semantic search and knowledge indexing
- TypeScript - For type safety and developer experience
Made with β€οΈ for the MCP and Google Cloud communities
Related Servers
Meraki Magic MCP
A Python-based MCP server for Cisco's Meraki Dashboard, providing tools to query the API for discovering, monitoring, and managing your Meraki environment.
Honeycomb MCP
Interact with Honeycomb observability data, including datasets, SLOs, and triggers.
Google Ads
MCP server acting as an interface to the Google Ads, enabling programmatic access to Google Ads data and management features.
Remote MCP Server (Authless)
A remote MCP server without authentication, deployable on Cloudflare Workers.
CData LinkedIn Ads
MCP Server for LinkedIn Ads, powered by the CData JDBC Driver. Requires a separate license and configuration.
Remote MCP Server on Cloudflare
A remote MCP server deployable on Cloudflare Workers with OAuth login support, using Cloudflare KV for data storage.
Netlify MCP Server
An MCP server providing comprehensive access to Netlify's features and services.
Terrakube MCP Server
Manage Terrakube workspaces, variables, modules, and organizations.
Dynatrace
An MCP server for the Dynatrace observability platform.
εΏ«ι100 MCP Server (Python)
Access logistics information services from Kuaidi100, including package tracking, shipping cost estimation, and delivery time prediction. Requires a Kuaidi100 API key.