Agile Planner MCP Server
An AI-powered server for generating agile artifacts like backlogs, features, and user stories.
Agile Planner MCP Server (v1.7.3) - AI-Powered Agile Backlog Generator
Agile Planner MCP automatically generates complete agile backlogs (Epics, User Stories, MVP, iterations) or specific features from a simple description, directly within Windsurf, Cascade, or Cursor, with no technical skills required.
Latest improvements (v1.7.3):
- Correction du mode MCP pour generateFeature: Amélioration robuste de l'extraction des user stories
- Structure RULE 3 renforcée: Creation cohérente des dossiers epics/features/user-stories
- Résolution du problème Notepad sur Windows: Normalisation des flux stderr/stdout en mode MCP
- Logs de diagnostic détaillés: Identification plus facile des problèmes
- Restructuration du projet: Organisation claire des fichiers de test et temporaires
- Mise à jour des guides d'utilisation: Instructions complètes pour Windsurf, Claude et Cursor
- See CHANGELOG.md for full details.
Previous improvements (v1.7.1):
- Refonte complète de la documentation MCP: Documentation détaillée de l'architecture serveur MCP avec diagrammes Mermaid.
- Réduction de la complexité cognitive: Refactorisation majeure des modules critiques (json-parser, mcp-router).
- Amélioration de la robustesse: Meilleure gestion des erreurs et tests d'intégration E2E optimisés.
- See CHANGELOG.md for details.
❌ Without Agile Planner MCP
Creating agile backlogs manually is time-consuming and error-prone:
- ❌ Hours spent writing user stories, acceptance criteria, and tasks
- ❌ Inconsistent formatting and structure across different projects
- ❌ No clear implementation guidance for AI coding assistants
- ❌ Manual prioritization and organization without strategic framework
✅ With Agile Planner MCP
Gestion d’erreur centralisée
- Tous les retours d’erreur des fonctions
generateBacklogetgenerateBacklogDirectsont désormais formatés parhandleBacklogErrorpour garantir l’uniformité du JSON et la robustesse de l’audit. - Les exemples d’erreur affichent le format :
{ success: false, error: { message: ... } }
Agile Planner MCP generates complete, structured agile backlogs with precise AI-guided annotations in seconds:
- ✅ Complete backlog structure with epics, features, user stories, and orphan stories
- ✅ AI-optimized annotations that guide implementation step-by-step
- ✅ Progress tracking with task checkboxes and dependency management
- ✅ Centralized organization in a dedicated
.agile-planner-backlogfolder - ✅ Intelligent feature organization that automatically associates features with relevant epics
📑 Documentation
This documentation has been reorganized for better navigation:
User Guides
- Guide d'intégration MCP - Guide d'intégration avec Claude, Cursor et Windsurf IDE
- Guide d'utilisation optimal - Guide d'utilisation détaillé
- Guide de migration - Guide pour migrer depuis les versions précédentes
Developer Documentation
- Développement - Guide de développement
- Spécifications MCP - Spécification du protocole MCP
- Problèmes connus - Liste des problèmes connus et dette technique
- Plan de refactorisation - Plan détaillé de refactorisation du code
- Plan de refactorisation des tests - Plan de correction des tests
- Roadmap - Feuille de route des versions futures
- Architecture MCP - Architecture complète du serveur MCP
- Système de génération Markdown - Architecture du générateur markdown
- Format du backlog - Spécification du format JSON de backlog
Helper Functions
- createApiMessages(project) - Génère la paire de messages système/utilisateur pour l'IA. Le paramètre
projectpeut être une chaîne de type"Nom: description"ou un objet{ name, description }.
Note TDD : Les assertions sur les erreurs doivent vérifier le format unifié
{ success: false, error: { message: ... } }. Toute modification du format d’erreur nécessite la mise à jour des tests d’intégration.
Architecture Documentation
- Design - Design général du projet
- Format de backlog - Format du backlog généré
- Diagramme de validation de backlog - Diagramme de validation
- Compatibilité Multi-LLM - Compatibilité avec plusieurs LLMs
🚦 Setting up in Windsurf / Cascade / Cursor
Ask your administrator or technical team to add this MCP server to your workspace configuration:
- Copy
.env.exampleto.envand fill in yourOPENAI_API_KEYorGROQ_API_KEY.
Option 1: Using a local installation
{
"mcpServers": {
"agile-planner": {
"command": "node",
"args": ["D:/path/to/agile-planner/server/index.js"],
"env": {
"MCP_EXECUTION": "true",
"OPENAI_API_KEY": "sk-..."
}
}
}
}
Option 2: Using the NPM package
{
"mcpServers": {
"agile-planner": {
"command": "npx",
"args": ["agile-planner-mcp-server"],
"env": {
"MCP_EXECUTION": "true",
"OPENAI_API_KEY": "sk-..."
}
}
}
}
🧠 How It Works
-
Describe your project in plain English, providing as much detail as possible.
SaaS task management system for teams with Slack integration, mobile support, and GDPR compliance. -
Agile Planner MCP processes your description through a robust validation pipeline:
- 🤖 Leverages OpenAI or Groq LLMs to generate the backlog structure
- 🧪 Validates the structure against a comprehensive JSON schema
- 🔍 Enhances features with acceptance criteria and tasks
- 📝 Organizes stories into epics and features
- 🏗️ Creates a complete directory structure with markdown files
-
Receive a fully structured agile backlog in seconds:
Structure du dossier généré
.agile-planner-backlog/
├── epics/
│ └── [epic-slug]/
│ ├── epic.md
│ └── features/
│ └── [feature-slug]/
│ ├── feature.md
│ └── user-stories/
│ ├── [story-1].md
│ └── [story-2].md
├── orphan-stories/
│ ├── [story-orpheline-1].md
│ └── [story-orpheline-2].md
└── backlog.json
Note : Les dossiers
planning/mvpetplanning/iterationssont supprimés. Toutes les user stories sont générées dans leur arborescence épics/features ou dansorphan-storiessi elles ne sont rattachées à aucune feature/epic. Le fichierbacklog.jsonne contient plus de sectionsmvpouiterations.
All files include AI-friendly instructions to guide implementation. See the examples folder for sample outputs.
Commands
Agile Planner MCP supports the following commands:
Generate a Complete Backlog
// In Windsurf or Cascade
mcp0_generateBacklog({
projectName: "My Project",
projectDescription: "A detailed description of the project...",
outputPath: "optional/custom/path"
})
// CLI
npx agile-planner-mcp-server backlog "My Project" "A detailed description of the project..."
Generate a Specific Feature
// In Windsurf or Cascade
mcp0_generateFeature({
featureDescription: "A detailed description of the feature to generate",
storyCount: 3, // Optional: number of user stories to generate (min: 3)
businessValue: "High", // Optional: business value of this feature
iterationName: "iteration-2", // Optional: target iteration (default: 'next')
epicName: "Optional Epic Name", // Optional: specify an epic or let the system find/create one
outputPath: "optional/custom/path" // Optional: custom output directory
})
// CLI
npx agile-planner-mcp-server feature "A detailed description of the feature to generate"
🔄 Environment Variables
| Variable | Description | Default |
|---|---|---|
MCP_EXECUTION | Required - Must be set to "true" for MCP mode | - |
OPENAI_API_KEY | OpenAI API key for generating backlog | - |
GROQ_API_KEY | Alternative Groq API key | - |
DEBUG | Enable debug mode for additional logs | false |
TEST_MODE | Enable test mode (mock generation) | false |
AGILE_PLANNER_OUTPUT_ROOT | Base directory for output | current dir |
📜 License
Agile Planner MCP Server is licensed under the MIT License with Commons Clause. See the LICENSE file for the complete license text.
👥 Support
For support, please open an issue on the GitHub repository or contact your Windsurf/Cascade/Cursor administrator.
☕️ Support the Project
If you find this project useful, you can support its development by buying me a coffee on BuyMeACoffee!
🚀 Get Windsurf
Thank you 🙏
Related Servers
Futarchy MCP
Interact with the Futarchy protocol on the Solana blockchain.
Python Interpreter MCP
An MCP server that provides Python code execution capabilities through a REST API interface.
ndlovu-code-reviewer
Manual code reviews are time-consuming and often miss the opportunity to combine static analysis with contextual, human-friendly feedback. This project was created to experiment with MCP tooling that gives AI assistants access to a purpose-built reviewer. Uses the Gemini cli application to process the reviews at this time and linting only for typescript/javascript apps at the moment. Will add API based calls to LLM's in the future and expand linting abilities. It's also cheaper than using coderabbit ;)
Panther
Interact with the Panther security platform to write detections, query logs with natural language, and manage alerts.
CSS Tutor
Provides personalized updates and tutoring on CSS features using the OpenRouter API.
Zen MCP
An AI-powered server providing access to multiple models for code analysis, problem-solving, and collaborative development with guided workflows.
Projet MCP Server-Client
An implementation of the Model Context Protocol (MCP) for communication between AI models and external tools, featuring server and client examples in Python and Spring Boot.
ComfyUI MCP Server
An image generation server that connects to a local ComfyUI instance via its API, supporting dynamic workflows.
NMAP
Perform network scanning and security auditing using the NMAP utility.
DeployHQ
A Model Context Protocol (MCP) server for DeployHQ that enables AI assistants like Claude Desktop and Claude Code to interact with your DeployHQ deployments.
