Mentor MCP
Provides AI-powered mentorship to LLM agents for tasks like code review, design critique, and brainstorming, using the Deepseek API.
mentor-mcp-server
A Model Context Protocol server providing LLM Agents a second opinion via AI-powered Deepseek-Reasoning (R1) mentorship capabilities, including code review, design critique, writing feedback, and idea brainstorming through the Deepseek API. Set your LLM Agent up for success with expert second opinions and actionable insights.
Model Context Protocol
The Model Context Protocol (MCP) enables communication between:
- Clients: Claude Desktop, IDEs, and other MCP-compatible clients
- Servers: Tools and resources for task management and automation
- LLM Agents: AI models that leverage the server's capabilities
Table of Contents
Features
Code Analysis
- Comprehensive code reviews
- Bug detection and prevention
- Style and best practices evaluation
- Performance optimization suggestions
- Security vulnerability assessment
Design & Architecture
- UI/UX design critiques
- Architectural diagram analysis
- Design pattern recommendations
- Accessibility evaluation
- Consistency checks
Content Enhancement
- Writing feedback and improvement
- Grammar and style analysis
- Documentation review
- Content clarity assessment
- Structural recommendations
Strategic Planning
- Feature enhancement brainstorming
- Second opinions on approaches
- Innovation suggestions
- Feasibility analysis
- User value assessment
Installation
# Clone the repository
git clone git@github.com:cyanheads/mentor-mcp-server.git
cd mentor-mcp-server
# Install dependencies
npm install
# Build the project
npm run build
Configuration
Add to your MCP client settings:
{
  "mcpServers": {
    "mentor": {
      "command": "node",
      "args": ["build/index.js"],
      "env": {
        "DEEPSEEK_API_KEY": "your_api_key",
        "DEEPSEEK_MODEL": "deepseek-reasoner",
        "DEEPSEEK_MAX_TOKENS": "8192",
        "DEEPSEEK_MAX_RETRIES": "3",
        "DEEPSEEK_TIMEOUT": "30000"
      }
    }
  }
}
Environment Variables
| Variable | Required | Default | Description | 
|---|---|---|---|
| DEEPSEEK_API_KEY | Yes | - | Your Deepseek API key | 
| DEEPSEEK_MODEL | Yes | deepseek-reasoner | Deepseek model name | 
| DEEPSEEK_MAX_TOKENS | No | 8192 | Maximum tokens per request | 
| DEEPSEEK_MAX_RETRIES | No | 3 | Number of retry attempts | 
| DEEPSEEK_TIMEOUT | No | 30000 | Request timeout (ms) | 
Tools
Code Review
<use_mcp_tool>
<server_name>mentor-mcp-server</server_name>
<tool_name>code_review</tool_name>
<arguments>
{
  "file_path": "src/app.ts",
  "language": "typescript"
}
</arguments>
</use_mcp_tool>
Design Critique
<use_mcp_tool>
<server_name>mentor-mcp-server</server_name>
<tool_name>design_critique</tool_name>
<arguments>
{
  "design_document": "path/to/design.fig",
  "design_type": "web UI"
}
</arguments>
</use_mcp_tool>
Writing Feedback
<use_mcp_tool>
<server_name>mentor-mcp-server</server_name>
<tool_name>writing_feedback</tool_name>
<arguments>
{
  "text": "Documentation content...",
  "writing_type": "documentation"
}
</arguments>
</use_mcp_tool>
Feature Enhancement
<use_mcp_tool>
<server_name>mentor-mcp-server</server_name>
<tool_name>brainstorm_enhancements</tool_name>
<arguments>
{
  "concept": "User authentication system"
}
</arguments>
</use_mcp_tool>
Examples
Detailed examples of each tool's usage and output can be found in the examples directory:
- Second Opinion Example - Analysis of authentication system requirements
- Code Review Example - Detailed TypeScript code review with security and performance insights
- Design Critique Example - Comprehensive UI/UX feedback for a dashboard design
- Writing Feedback Example - Documentation improvement suggestions
- Brainstorm Enhancements Example - Feature ideation with implementation details
Each example includes the request format and sample response, demonstrating the tool's capabilities and output structure.
Development
# Build TypeScript code
npm run build
# Start the server
npm run start
# Development with watch mode
npm run dev
# Clean build artifacts
npm run clean
Project Structure
src/
├── api/         # API integration modules
├── tools/       # Tool implementations
│   ├── second-opinion/
│   ├── code-review/
│   ├── design-critique/
│   ├── writing-feedback/
│   └── brainstorm-enhancements/
├── types/       # TypeScript type definitions
├── utils/       # Utility functions
├── config.ts    # Server configuration
├── index.ts     # Entry point
└── server.ts    # Main server implementation
License
Apache License 2.0. See LICENSE for more information.
Related Servers
- SuperCollider MCP Server- An MCP server for the SuperCollider programming language that executes synths using supercolliderjs. 
- TLS MCP Server- Analyze TLS certificates using OpenSSL and zlint. 
- API Tester- This MCP Server accepts swagger/postman documents as input. It then generates API & Load test scenarios, executes the tests and generates the execution report. 
- Jetty.io- Work on dataset metadata with MLCommons Croissant validation and creation. 
- Jenkins API MCP Server- A server for managing Jenkins jobs through its REST API, including operations like building, configuration, and information retrieval. 
- MLflow Prompt Registry- Access prompt templates managed in an MLflow Prompt Registry. Requires a running MLflow server configured via the MLFLOW_TRACKING_URI environment variable. 
- iOS Device Control- An MCP server to control iOS simulators and real devices, enabling AI assistant integration on macOS. 
- Frame0 MCP Server- Create and modify wireframes in the Frame0 app through natural language prompts. 
- MCPR- Expose R functions through the Model Context Protocol (MCP) for seamless integration with AI assistants. 
- mcp.shop- A web shop built with MCP, WorkOS AuthKit, and Next.js.