Gemini Image MCP Server
Image generation using Google's Gemini API.
Gemini Image MCP Server
This is an MCP (Model Context Protocol) server that uses Google's Gemini API to generate images and save them to a specified directory. In addition to text prompts, you can optionally provide input images to guide the image generation process. Generated images are automatically compressed to reduce file size.
Features
- Image generation from text prompts
- (Optional) Image generation using input reference images
- Automatic compression of generated images (JPEG, PNG)
- Unique file name assignment to prevent file name conflicts
- Operates as an MCP server, accepting tool calls via standard input/output
Prerequisites
- Node.js (v18 or higher recommended)
- Google Cloud Project with Gemini API enabled
- Gemini API Key
Setup
Example MCP server configuration for Roo Code
{
"mcpServers": {
"gemini-image-mcp-server": {
"command": "npx",
"args": [
"-y",
"@creating-cat/gemini-image-mcp-server"
],
"env": {
"GEMINI_API_KEY": "YOUR_GEMINI_API_KEY"
},
"disabled": false,
"timeout": 300
}
}
}
-
Replace
YOUR_GEMINI_API_KEYwith your actual Gemini API Key.- You can also use
${env:GEMINI_API_KEY}to retrieve the key from environment variables (Roo Code feature).
- You can also use
Tool: generate_image
This MCP server provides a tool named generate_image.
Input Parameters
| Parameter Name | Description | Default Value |
|---|---|---|
prompt | (string, required) Text prompt for image generation. If input images are provided, include instructions on how to incorporate them into the generated image. English is recommended. | None |
output_directory | (string, optional) Directory path where the generated image will be saved. | output/images |
file_name | (string, optional) Name of the saved image file (without extension). | generated_image |
input_image_paths | (string[], optional) List of file paths for input reference images. | [] (empty array) |
use_enhanced_prompt | (boolean, optional) Whether to use enhanced prompts to assist AI instructions. | true |
target_image_max_size | (number, optional) Maximum size (in pixels) for the longer edge after resizing. The aspect ratio is preserved. | 512 |
force_conversion_type | (string, optional) Optionally force conversion to a specific format ('jpeg', 'webp', 'png'). If not specified, the original format will be processed, defaulting to PNG for non-JPEG images. | None |
skip_compression_and_resizing | (boolean, optional) Whether to skip compression and resizing of generated images. If true, force_conversion_type and target_image_max_size will be ignored. | false |
jpeg_quality | (number, optional) JPEG quality (0-100). Lower values result in higher compression. | 80 |
webp_quality | (number, optional) WebP quality (0-100). Lower values result in higher compression. | 80 |
png_compression_level | (number, optional) PNG compression level (0-9). Higher values result in higher compression. | 9 |
optipng_optimization_level | (number, optional) OptiPNG optimization level (0-7). Higher values result in higher compression. | 2 |
Output
On success, the server returns the save path of the generated image and a message detailing the process, including the original and compressed file sizes. Example:
{
"content": [
{
"type": "text",
"text": "Image successfully generated and compressed at output/images/my_cat.jpg.\nOriginal size: 1024.12KB, Final size: 150.45KB"
}
]
}
If an error occurs, an error message will be returned.
Notes
- The MIME type and aspect ratio of the generated images depend on the default settings of the Gemini API.
- Handle your API key with care.
- This server uses the model
gemini-2.0-flash-preview-image-generation. Google may discontinue this model in the future.
License
MIT
Related Servers
FreeCAD
Integrate with FreeCAD, a free and open-source parametric 3D modeler, via a Python bridge.
Reference Servers
Reference implementations of Model Context Protocol (MCP) servers in Typescript and Python, showcasing MCP features and SDK usage.
Streamable HTTP Server Example
An example MCP server demonstrating streamable HTTP responses using Node.js.
APIWeaver
A universal bridge to convert any web API into an MCP server, supporting multiple transport types.
OPNSense MCP Server
Manage OPNsense firewalls using Infrastructure as Code (IaC) principles.
GDB
A GDB/MI protocol server based on the MCP protocol, providing remote application debugging capabilities with AI assistants.
HED MCP Server
An MCP server for Hierarchical Event Descriptors (HED) that automates sidecar creation and annotation for BIDS event files using LLMs.
BoostSecurity
BoostSecurity MCP acts as a safeguard preventing agents from adding vulnerable packages into projects. It analyzes every package an AI agent introduces, flags unsafe dependencies, and recommends secure, maintained alternatives to keep projects protected.
Croft Laravel
A local MCP server for Laravel developers to boost productivity with artisan commands.
Maya MCP
MCP server for Autodesk Maya