MCP Read Images
Analyze images using OpenRouter's vision models. Requires an OpenRouter API key.
MCP Read Images
An MCP server for analyzing images using OpenRouter vision models. This server provides a simple interface to analyze images using various vision models like Claude-3.5-sonnet and Claude-3-opus through the OpenRouter API.
Installation
npm install @catalystneuro/mcp_read_images
Configuration
The server requires an OpenRouter API key. You can get one from OpenRouter.
Add the server to your MCP settings file (usually located at ~/Library/Application Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json for VSCode):
{
"mcpServers": {
"read_images": {
"command": "read_images",
"env": {
"OPENROUTER_API_KEY": "your-api-key-here",
"OPENROUTER_MODEL": "anthropic/claude-3.5-sonnet" // optional, defaults to claude-3.5-sonnet
},
"disabled": false,
"autoApprove": []
}
}
}
Usage
The server provides a single tool analyze_image that can be used to analyze images:
// Basic usage with default model
use_mcp_tool({
server_name: "read_images",
tool_name: "analyze_image",
arguments: {
image_path: "/path/to/image.jpg",
question: "What do you see in this image?" // optional
}
});
// Using a specific model for this call
use_mcp_tool({
server_name: "read_images",
tool_name: "analyze_image",
arguments: {
image_path: "/path/to/image.jpg",
question: "What do you see in this image?",
model: "anthropic/claude-3-opus-20240229" // overrides default and settings
}
});
Model Selection
The model is selected in the following order of precedence:
- Model specified in the tool call (
modelargument) - Model specified in MCP settings (
OPENROUTER_MODELenvironment variable) - Default model (anthropic/claude-3.5-sonnet)
Supported Models
The following OpenRouter models have been tested:
- anthropic/claude-3.5-sonnet
- anthropic/claude-3-opus-20240229
Features
- Automatic image resizing and optimization
- Configurable model selection
- Support for custom questions about images
- Detailed error messages
- Automatic JPEG conversion and quality optimization
Error Handling
The server handles various error cases:
- Invalid image paths
- Missing API keys
- Network errors
- Invalid model selections
- Image processing errors
Each error will return a descriptive message to help diagnose the issue.
Development
To build from source:
git clone https://github.com/catalystneuro/mcp_read_images.git
cd mcp_read_images
npm install
npm run build
License
MIT License. See LICENSE for details.
Related Servers
Scout Monitoring MCP
sponsorPut performance and error data directly in the hands of your AI assistant.
Alpha Vantage MCP Server
sponsorAccess financial market data: realtime & historical stock, ETF, options, forex, crypto, commodities, fundamentals, technical indicators, & more
Flutter MCP
A real-time MCP server providing Flutter/Dart documentation and pub.dev package information to AI assistants, supporting over 50,000 packages on demand.
SeedDream 3.0 FAL
Generate images using Bytedance's SeedDream 3.0 model via the FAL AI platform. Requires a FAL AI API key.
MCP Trading Partner Management
An MCP server for managing trading partners in the SAP Integration Suite.
MCP Pyrefly
A server for real-time Python code validation using Pyrefly, designed to prevent common coding errors from LLMs.
Context 7
Up-to-date Docs For Any Cursor Prompt
NeoCoder
Enables AI assistants to use a Neo4j knowledge graph for standardized coding workflows, acting as a dynamic instruction manual and project memory.
MCP Servers Nix
A Nix-based configuration framework for deploying MCP servers with ready-to-use packages, supporting modular and reproducible builds.
BitFactory MCP
Simplifies and standardizes interactions with the BitFactory API.
AgentPM
A planning and orchestration system for AI-driven software development.
MCP Hangar
Kubernetes-native registry for managing multiple MCP servers with lazy loading, health monitoring, and RBAC