MCP Read Images
Analyze images using OpenRouter's vision models. Requires an OpenRouter API key.
MCP Read Images
An MCP server for analyzing images using OpenRouter vision models. This server provides a simple interface to analyze images using various vision models like Claude-3.5-sonnet and Claude-3-opus through the OpenRouter API.
Installation
npm install @catalystneuro/mcp_read_images
Configuration
The server requires an OpenRouter API key. You can get one from OpenRouter.
Add the server to your MCP settings file (usually located at ~/Library/Application Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json for VSCode):
{
"mcpServers": {
"read_images": {
"command": "read_images",
"env": {
"OPENROUTER_API_KEY": "your-api-key-here",
"OPENROUTER_MODEL": "anthropic/claude-3.5-sonnet" // optional, defaults to claude-3.5-sonnet
},
"disabled": false,
"autoApprove": []
}
}
}
Usage
The server provides a single tool analyze_image that can be used to analyze images:
// Basic usage with default model
use_mcp_tool({
server_name: "read_images",
tool_name: "analyze_image",
arguments: {
image_path: "/path/to/image.jpg",
question: "What do you see in this image?" // optional
}
});
// Using a specific model for this call
use_mcp_tool({
server_name: "read_images",
tool_name: "analyze_image",
arguments: {
image_path: "/path/to/image.jpg",
question: "What do you see in this image?",
model: "anthropic/claude-3-opus-20240229" // overrides default and settings
}
});
Model Selection
The model is selected in the following order of precedence:
- Model specified in the tool call (
modelargument) - Model specified in MCP settings (
OPENROUTER_MODELenvironment variable) - Default model (anthropic/claude-3.5-sonnet)
Supported Models
The following OpenRouter models have been tested:
- anthropic/claude-3.5-sonnet
- anthropic/claude-3-opus-20240229
Features
- Automatic image resizing and optimization
- Configurable model selection
- Support for custom questions about images
- Detailed error messages
- Automatic JPEG conversion and quality optimization
Error Handling
The server handles various error cases:
- Invalid image paths
- Missing API keys
- Network errors
- Invalid model selections
- Image processing errors
Each error will return a descriptive message to help diagnose the issue.
Development
To build from source:
git clone https://github.com/catalystneuro/mcp_read_images.git
cd mcp_read_images
npm install
npm run build
License
MIT License. See LICENSE for details.
Related Servers
Airflow MCP Server
Control Apache Airflow via its API using JWT authentication.
shadow-cljs
Monitors shadow-cljs builds and provides real-time build status updates.
npm Package README
Fetch READMEs, metadata, and search for packages on the npm registry.
Qwen-Agent
A framework for developing LLM applications with capabilities like tool usage, planning, and memory, based on the Qwen model.
Open MCP Server
A service framework supporting the Model Context Protocol (MCP) to integrate enterprise systems and AI platforms via RESTful, gRPC, and Dubbo protocols.
Docker Hub README MCP Server
Search for Docker images and retrieve their READMEs and metadata from Docker Hub.
nREPL MCP Server
Interact with a running Clojure nREPL instance for code evaluation, namespace inspection, and other utilities.
MCP Neurolora
An intelligent server for code analysis, collection, and documentation generation using the OpenAI API.
Pprof Analyzer
Analyze Go pprof performance profiles (CPU, heap, goroutine, etc.) and generate flamegraphs.
MasterMCP
A demonstration tool showcasing potential security attack vectors against the Model Control Protocol (MCP).