Tavily Search
Optimized web search for LLMs using the Tavily Search API.
Tavily Search MCP Server
An MCP server implementation that integrates the Tavily Search API, providing optimized search capabilities for LLMs.
Features
- Web Search: Perform web searches optimized for LLMs, with control over search depth, topic, and time range.
- Content Extraction: Extracts the most relevant content from search results, optimizing for quality and size.
- Optional Features: Include images, image descriptions, short LLM-generated answers, and raw HTML content.
- Domain Filtering: Include or exclude specific domains in search results.
Tools
- tavily_search
- Execute web searches using the Tavily Search API.
- Inputs:
query(string, required): The search query.search_depth(string, optional): "basic" or "advanced" (default: "basic").topic(string, optional): "general" or "news" (default: "general").days(number, optional): Number of days back for news search (default: 3).time_range(string, optional): Time range filter ("day", "week", "month", "year" or "d", "w", "m", "y").max_results(number, optional): Maximum number of results (default: 5).include_images(boolean, optional): Include related images (default: false).include_image_descriptions(boolean, optional): Include descriptions for images (default: false).include_answer(boolean, optional): Include a short LLM-generated answer (default: false).include_raw_content(boolean, optional): Include raw HTML content (default: false).include_domains(string[], optional): Domains to include.exclude_domains(string[], optional): Domains to exclude.
Setup Guide 🚀
1. Prerequisites
- Claude Desktop installed on your computer.
- A Tavily API key: a. Sign up for a Tavily API account. b. Choose a plan (Free tier available). c. Generate your API key from the Tavily dashboard.
2. Installation
-
Clone this repository somewhere on your computer:
git clone https://github.com/apappascs/tavily-search-mcp-server.git -
Install dependencies & build the project:
cd tavily-search-mcp-servernpm installnpm run build
3. Integration with Claude Desktop
-
Open your Claude Desktop configuration file:
# On Mac: ~/Library/Application\ Support/Claude/claude_desktop_config.json # On Windows: %APPDATA%\Claude\claude_desktop_config.json -
Add one of the following to the
mcpServersobject in your config, depending on whether you want to run the server usingnpmordocker:Option A: Using NPM (stdio transport)
{ "mcpServers": { "tavily-search-server": { "command": "node", "args": [ "/Users/<username>/<FULL_PATH...>/tavily-search-mcp-server/dist/index.js" ], "env": { "TAVILY_API_KEY": "your_api_key_here" } } } }Option B: Using NPM (SSE transport)
{ "mcpServers": { "tavily-search-server": { "command": "node", "args": [ "/Users/<username>/<FULL_PATH...>/tavily-search-mcp-server/dist/sse.js" ], "env": { "TAVILY_API_KEY": "your_api_key_here" }, "port": 3001 } } }Option C: Using Docker
{ "mcpServers": { "tavily-search-server": { "command": "docker", "args": [ "run", "-i", "--rm", "-e", "TAVILY_API_KEY", "-v", "/Users/<username>/<FULL_PATH...>/tavily-search-mcp-server:/app", "tavily-search-mcp-server" ], "env": { "TAVILY_API_KEY": "your_api_key_here" } } } } -
Important Steps:
- Replace
/Users/<username>/<FULL_PATH...>/tavily-search-mcp-serverwith the actual full path to where you cloned the repository. - Add your Tavily API key in the
envsection. It's always better to have secrets like API keys as environment variables. - Make sure to use forward slashes (
/) in the path, even on Windows. - If you are using docker make sure you build the image first using
docker build -t tavily-search-mcp-server:latest .
- Replace
-
Restart Claude Desktop for the changes to take effect.
Installing via Smithery
To install Tavily Search for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @apappascs/tavily-search-mcp-server --client claude
Environment Setup (for npm)
-
Copy
.env.exampleto.env:cp .env.example .env -
Update the
.envfile with your actual Tavily API key:TAVILY_API_KEY=your_api_key_hereNote: Never commit your actual API key to version control. The
.envfile is ignored by git for security reasons.
Running with NPM
Start the server using Node.js:
node dist/index.js
For sse transport:
node dist/sse.js
Running with Docker
-
Build the Docker image (if you haven't already):
docker build -t tavily-search-mcp-server:latest . -
Run the Docker container with:
For stdio transport:
docker run -it --rm -e TAVILY_API_KEY="your_api_key_here" tavily-search-mcp-server:latestFor sse transport:
docker run -it --rm -p 3001:3001 -e TAVILY_API_KEY="your_api_key_here" -e TRANSPORT="sse" tavily-search-mcp-server:latestYou can also leverage your shell's environment variables directly, which is a more secure practice:
docker run -it --rm -p 3001:3001 -e TAVILY_API_KEY=$TAVILY_API_KEY -e TRANSPORT="sse" tavily-search-mcp-server:latestNote: The second command demonstrates the recommended approach of using
-e TAVILY_API_KEY=$TAVILY_API_KEYto pass the value of yourTAVILY_API_KEYenvironment variable into the Docker container. This keeps your API key out of your command history, and it is generally preferred over hardcoding secrets in commands. -
Using docker compose
Run:
docker compose up -dTo stop the server:
docker compose down
License
This MCP server is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.
Related Servers
SearXNG
A Model Context Protocol Server for SearXNG
MCP Compass
Explore and discover Model Context Protocol servers using natural language queries.
Coles and Woolworths MCP Server
Search for products and compare prices at Coles and Woolworths supermarkets in Australia.
Perplexity AI
An MCP server to interact with Perplexity AI's language models for search and conversational AI.
Tavily
Search engine for AI agents (search + extract) powered by Tavily
RagDocs
A server for RAG-based document search and management using Qdrant vector database with Ollama or OpenAI embeddings.
Jina AI Search
Perform semantic, image, and cross-modal searches using Jina AI's neural search capabilities.
Unsplash MCP Server
Search and integrate images from Unsplash using its official API.
Code Research MCP Server
Search and access programming resources from Stack Overflow, MDN, GitHub, npm, and PyPI.
Brave Search
A server for Brave Search, enabling integration with AI assistants like Claude.