ThreatByte-MCP
ThreatByte-MCP is a deliberately vulnerable, MCP-based case management web app. It mirrors a realistic SOC analyst workflow with a server-rendered UI and a real MCP server. The MCP tools are intentionally vulnerable for training and demonstration.
ThreatByte-MCP
ThreatByte-MCP is a deliberately vulnerable, MCP-based case management web app. It mirrors a realistic SOC analyst workflow with a server-rendered UI and a real MCP server. The MCP tools are intentionally vulnerable for training and demonstration.
[!NOTE] For educational use in controlled environments only.
Features
- Safe web authentication (signup/login/logout)
- Case management UI (create/list/view cases)
- Notes and attachments tied to cases
- Indicator search and agent workflows via MCP tools
- Agent customization with schema-based tool registry
MCP Server (SDK, JSON-RPC)
ThreatByte-MCP is a split architecture:
- SOC Web App (client/UI) runs on port 5001.
- MCP Server (tools + agent) runs on port 5002 using the official MCP Python SDK (FastMCP).
The MCP server exposes JSON-RPC at POST http://localhost:5002/mcp (Streamable HTTP). The web UI calls the MCP server through a server-side proxy to keep auth consistent with the SOC session; the proxy streams agent responses to the browser via SSE. A sample mcp.json manifest is included at the repo root.
All direct MCP calls must include MCP-Protocol-Version: 2025-11-25 and Accept: application/json, text/event-stream.
Architecture (simplified):
Browser
|
v
+------------------+ X-TBMCP-Token + X-TBMCP-User +-------------------+
| SOC Web App | ---------------------------------------> | MCP Server |
| (Flask, :5001) | /mcp-proxy (server-side) | (FastMCP, :5002) |
+------------------+ +-------------------+
| |
v v
SQLite DB Tool registry
Agent + tool handlers
Architecture (detailed):
Browser (Analyst)
|
v
SOC Web App (Flask, :5001)
| - Auth session (cookie)
| - Dashboards, cases, notes, files UI
| - /mcp-proxy forwards JSON-RPC
|
+--> SQLite DB
| - users, cases, notes, files, indicators
|
+--> Uploads (app/uploads)
|
v
MCP Server (FastMCP, :5002)
| - /mcp JSON-RPC (Streamable HTTP)
| - X-TBMCP-Token + X-TBMCP-User headers
|
+--> Tool registry (mcp_tools)
| - schema-based tools (poisonable)
|
+--> Agent runtime
| - prompt builder (hardcoded tokens)
| - LLM API call
|
+--> Persistence
- agent_contexts (prompt store)
- agent_logs (full request/response)
MCP Auth Between Web App and MCP Server
The web app proxies MCP calls with these headers:
X-TBMCP-Token: shared secret fromTBMCP_MCP_SERVER_TOKEN(configured on both servers).X-TBMCP-User: current user id from the authenticated SOC session.
Direct MCP calls require the same headers.
Supported tools:
cases.createcases.listcases.list_allcases.getcases.renamecases.set_statuscases.deletenotes.createnotes.listnotes.updatenotes.deletefiles.upload(base64)files.listfiles.get(base64)files.read_pathindicators.searchagent.summarize_caseagent.run_tasktools.registry.listtools.builtin.listtools.registry.registertools.registry.delete
Vulnerability Themes (Training-Focused)
The following weaknesses are intentionally present for teaching:
- Broken object level authorization (cases/notes/files, list_all)
- Stored XSS (notes rendered as trusted HTML)
- SQL injection in indicator search
- Prompt injection in agent task runner
- Token mismanagement & secret exposure (hardcoded tokens in prompts, persisted contexts, full logs)
- Tool poisoning via schema-driven tool registry overrides (MCP03)
- Over-trusting client context (MCP header identity spoofing)
- Arbitrary file read via
files.read_path - Cross-user file overwrite (shared filename namespace)
Running Locally
cd ThreatByte-MCP
python -m venv venv_threatbyte_mcp
source venv_threatbyte_mcp/bin/activate
pip install -r requirements.txt
python db/create_db_tables.py
python run_http_server.py
python run.py
Open: http://localhost:5001
MCP Server: http://localhost:5002/mcp
Running with Docker or Podman
The repository includes a Dockerfile and startup script that initialize the DB and run both services in one container:
- SOC Web App on
:5001 - MCP Server on
:5002
Build the image:
# Docker
docker build -t threatbyte-mcp .
# Podman
podman build -t threatbyte-mcp .
Run the container:
# Docker
docker run --rm -p 5001:5001 -p 5002:5002 threatbyte-mcp
# Podman
podman run --rm -p 5001:5001 -p 5002:5002 threatbyte-mcp
Run with optional environment variables:
# Docker
docker run --rm -p 5001:5001 -p 5002:5002 \
-e TBMCP_MCP_SERVER_TOKEN=tbmcp-mcp-token \
-e OPENAI_API_KEY=your_api_key \
-e TBMCP_OPENAI_MODEL=gpt-4o-mini \
threatbyte-mcp
# Podman
podman run --rm -p 5001:5001 -p 5002:5002 \
-e TBMCP_MCP_SERVER_TOKEN=tbmcp-mcp-token \
-e OPENAI_API_KEY=your_api_key \
-e TBMCP_OPENAI_MODEL=gpt-4o-mini \
threatbyte-mcp
Persist SQLite data between runs (optional):
# Docker
docker run --rm -p 5001:5001 -p 5002:5002 \
-v "$(pwd)/db:/app/db" \
-v "$(pwd)/app/uploads:/app/app/uploads" \
threatbyte-mcp
# Podman
podman run --rm -p 5001:5001 -p 5002:5002 \
-v "$(pwd)/db:/app/db:Z" \
-v "$(pwd)/app/uploads:/app/app/uploads:Z" \
threatbyte-mcp
Populate Sample Data
python db/populate_db.py --users 8 --cases 20 --notes 40 --files 20
This creates random users, cases, notes, and file artifacts. All user passwords are Password123!.
LLM Integration (Required for Agent Responses)
The agent task endpoint requires a real LLM. Without an API key, the agent returns an error indicating it is unavailable.
Environment variables:
TBMCP_OPENAI_API_KEYorOPENAI_API_KEYTBMCP_OPENAI_MODEL(default:gpt-4o-mini)
Keep API keys server-side only and never expose them in the browser.
MCP Server Configuration
The SOC web app proxies MCP calls to the MCP server using a shared token.
Environment variables:
TBMCP_MCP_SERVER_URL(default:http://localhost:5002/mcp)TBMCP_MCP_SERVER_TOKEN(shared secret between the SOC app and MCP server)
Notes
- The UI uses server-rendered templates.
- MCP tools are exposed under
http://localhost:5002/mcp(JSON-RPC). The UI calls them through/mcp-proxy. - This app is intentionally insecure. Do not deploy it to the public internet.
Related Servers
Crypto Price & Market Analysis (JJ Fork)
Provides real-time cryptocurrency price data, market analysis, and historical trends using the CoinCap API.
SpeedOf.Me Speed Test MCP
Official SpeedOf.Me server for AI agents - accurate speed tests via 129 global edge servers with analytics dashboard.
Scholar Sidekick MCP
Resolve, format, and export academic citations from any AI assistant
MCP-Airflow-API
MCP-Airflow-API is an MCP server that leverages the Model Context Protocol (MCP) to transform Apache Airflow REST API operations into natural language tools. This project hides the complexity of API structures and enables intuitive management of Airflow clusters through natural language commands.
SO-ARM100 Robot Control with MCP
Control SO-ARM100 and LeKiwi robot arms using LLM-based AI agents.
Trading MCP Server
An intelligent trading assistant that fetches live stock prices using the Yahoo Finance API.
O'RLY Book Cover Generator
Generates O'RLY? (O'Reilly parody) book covers.
MCP Audio Tweaker
Batch audio processing and optimization using FFmpeg. Modify sample rate, bitrate, volume, channels, and apply effects.
OpenHue MCP Server
Control Philips Hue lights using LLM interfaces via the OpenHue CLI.
xcomet-mcp-server
Translation quality evaluation using xCOMET models. Provides quality scoring (0-1), error detection with severity levels, and optimized batch processing with 25x speedup.