Python MSSQL MCP Server
A Python MCP server for Microsoft SQL Server, enabling schema inspection and SQL query execution.
Python MSSQL MCP Server
A Model Context Protocol server implementation in Python that provides access to Microsoft SQL Server databases. This server enables Language Models to inspect table schemas and execute SQL queries through a standardized interface.
Features
Core Functionality
- Asynchronous operation using Python's
asyncio - Environment-based configuration using
python-dotenv - Comprehensive logging system
- Connection pooling and management via pyodbc
- Error handling and recovery
- FastAPI integration for API endpoints
- Pydantic models for data validation
- MSSQL connection handling with ODBC Driver
Prerequisites
- Python 3.x
- Required Python packages:
- pyodbc
- pydantic
- python-dotenv
- mcp-server
- ODBC Driver 17 for SQL Server
Installation
git clone https://github.com/amornpan/py-mcp-mssql.git
cd py-mcp-mssql
pip install -r requirements.txt
Screenshots

The screenshot above demonstrates the server being used with Claude to analyze and visualize SQL data.
Project Structure
PY-MCP-MSSQL/
├── src/
│ └── mssql/
│ ├── __init__.py
│ └── server.py
├── tests/
│ ├── __init__.py
│ ├── test_mssql.py
│ └── test_packages.py
├── .env
├── .env.example
├── .gitignore
├── README.md
└── requirements.txt
Directory Structure Explanation
src/mssql/- Main source code directory__init__.py- Package initializationserver.py- Main server implementation
tests/- Test files directory__init__.py- Test package initializationtest_mssql.py- MSSQL functionality teststest_packages.py- Package dependency tests
.env- Environment configuration file (not in git).env.example- Example environment configuration.gitignore- Git ignore rulesREADME.md- Project documentationrequirements.txt- Project dependencies
Configuration
Create a .env file in the project root:
MSSQL_SERVER=your_server
MSSQL_DATABASE=your_database
MSSQL_USER=your_username
MSSQL_PASSWORD=your_password
MSSQL_DRIVER={ODBC Driver 17 for SQL Server}
API Implementation Details
Resource Listing
@app.list_resources()
async def list_resources() -> list[Resource]
- Lists all available tables in the database
- Returns table names with URIs in the format
mssql://<table_name>/data - Includes table descriptions and MIME types
Resource Reading
@app.read_resource()
async def read_resource(uri: AnyUrl) -> str
- Reads data from specified table
- Accepts URIs in the format
mssql://<table_name>/data - Returns first 100 rows in CSV format
- Includes column headers
SQL Execution
@app.call_tool()
async def call_tool(name: str, arguments: dict) -> list[TextContent]
- Executes SQL queries
- Supports both SELECT and modification queries
- Returns results in CSV format for SELECT queries
- Returns affected row count for modification queries
Usage with Claude Desktop
Add to your Claude Desktop configuration:
On MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"mssql": {
"command": "python",
"args": [
"server.py"
],
"env": {
"MSSQL_SERVER": "your_server",
"MSSQL_DATABASE": "your_database",
"MSSQL_USER": "your_username",
"MSSQL_PASSWORD": "your_password",
"MSSQL_DRIVER": "{ODBC Driver 17 for SQL Server}"
}
}
}
}
Error Handling
The server implements comprehensive error handling for:
- Database connection failures
- Invalid SQL queries
- Resource access errors
- URI validation
- Tool execution errors
All errors are logged and returned with appropriate error messages.
Security Features
- Environment variable based configuration
- Connection string security
- Result set size limits
- Input validation through Pydantic
- Proper SQL query handling
Contact Information
Amornpan Phornchaicharoen
Feel free to reach out to me if you have any questions about this project or would like to collaborate!
Made with ❤️ by Amornpan Phornchaicharoen
License
This project is licensed under the MIT License - see the LICENSE file for details.
Author
Amornpan Phornchaicharoen
Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add some amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
Requirements
Create a requirements.txt file with:
fastapi>=0.104.1
pydantic>=2.10.6
uvicorn>=0.34.0
python-dotenv>=1.0.1
pyodbc>=4.0.35
anyio>=4.5.0
mcp==1.2.0
These versions have been tested and verified to work together. The key components are:
fastapianduvicornfor the API serverpydanticfor data validationpyodbcfor SQL Server connectivitymcpfor Model Context Protocol implementationpython-dotenvfor environment configurationanyiofor asynchronous I/O support
Acknowledgments
- Microsoft SQL Server team for ODBC drivers
- Python pyodbc maintainers
- Model Context Protocol community
- Contributors to the python-dotenv project
Related Servers
Postgres MCP Server
Provides secure database access to PostgreSQL using the Kysely ORM.
Borsa MCP
Provides programmatic access to Borsa Istanbul (BIST) stock data, financials, news, and analysis using KAP and Yahoo Finance.
SVM-MCP
Interact with SOON and other SVM-based blockchains. Check balances, fetch recent transactions, and view token holdings.
MCP for Neo4j
Connects to Neo4j graph databases with ability to use GDS functions ( when available), a read only mode , and set the sample size for schema detection
Pinecone
Read and write to a Pinecone vector database using the Model Context Protocol.
BigQuery
Inspect database schemas and execute queries on Google BigQuery.
MCP ArcKnowledge
Manage and query custom knowledge bases using webhook endpoints.
BigQuery
Explore, query, and manage data in Google BigQuery.
Unofficial Human Protein Atlas MCP Server
Access Human Protein Atlas data, including protein expression, localization, and pathology.
Astro MCP
A modular server providing unified access to multiple astronomical datasets, including astroquery services and DESI data sources.