Wolfram Alpha
Access Wolfram Alpha's computational knowledge engine for expert-level answers and data analysis.
MCP Wolfram Alpha (Server + Client)
Seamlessly integrate Wolfram Alpha into your chat applications.
This project implements an MCP (Model Context Protocol) server designed to interface with the Wolfram Alpha API. It enables chat-based applications to perform computational queries and retrieve structured knowledge, facilitating advanced conversational capabilities.
Included is an MCP-Client example utilizing Gemini via LangChain, demonstrating how to connect large language models to the MCP server for real-time interactions with Wolfram Alpha’s knowledge engine.
Features
-
Wolfram|Alpha Integration for math, science, and data queries.
-
Modular Architecture Easily extendable to support additional APIs and functionalities.
-
Multi-Client Support Seamlessly handle interactions from multiple clients or interfaces.
-
MCP-Client example using Gemini (via LangChain).
-
UI Support using Gradio for a user-friendly web interface to interact with Google AI and Wolfram Alpha MCP server.
Installation
Clone the Repo
git clone https://github.com/ricocf/mcp-wolframalpha.git
cd mcp-wolframalpha
Set Up Environment Variables
Create a .env file based on the example:
-
WOLFRAM_API_KEY=your_wolframalpha_appid
-
GeminiAPI=your_google_gemini_api_key (Optional if using Client method below.)
Install Requirements
pip install -r requirements.txt
Install the required dependencies with uv:
Ensure uv is installed.
uv sync
Configuration
To use with the VSCode MCP Server:
- Create a configuration file at
.vscode/mcp.jsonin your project root. - Use the example provided in
configs/vscode_mcp.jsonas a template. - For more details, refer to the VSCode MCP Server Guide.
To use with Claude Desktop:
{
"mcpServers": {
"WolframAlphaServer": {
"command": "python3",
"args": [
"/path/to/src/core/server.py"
]
}
}
}
Client Usage Example
This project includes an LLM client that communicates with the MCP server.
Run with Gradio UI
- Required: GeminiAPI
- Provides a local web interface to interact with Google AI and Wolfram Alpha.
- To run the client directly from the command line:
python main.py --ui
Docker
To build and run the client inside a Docker container:
docker build -t wolframalphaui -f .devops/ui.Dockerfile .
docker run wolframalphaui
UI
- Intuitive interface built with Gradio to interact with both Google AI (Gemini) and the Wolfram Alpha MCP server.
- Allows users to switch between Wolfram Alpha, Google AI (Gemini), and query history.

Run as CLI Tool
- Required: GeminiAPI
- To run the client directly from the command line:
python main.py
Docker
To build and run the client inside a Docker container:
docker build -t wolframalpha -f .devops/llm.Dockerfile .
docker run -it wolframalpha
Contact
Feel free to give feedback. The e-mail address is shown if you execute this in a shell:
printf "\x61\x6b\x61\x6c\x61\x72\x69\x63\x31\x40\x6f\x75\x74\x6c\x6f\x6f\x6b\x2e\x63\x6f\x6d\x0a"
Related Servers
iMessage Query
An MCP server for querying your iMessage database on macOS, allowing LLMs to safely access and search conversations.
Tavily Search
Perform web searches using the Tavily Search API.
GPT Researcher
Conducts autonomous, in-depth research by exploring and validating multiple sources to provide relevant and up-to-date information.
JinaAI Grounding
Enhances LLM responses with factual, real-time web content using Jina AI's grounding capabilities.
Untappd
Query the Untappd API for beer and brewery information.
Mevzuat MCP
Programmatic access to the Turkish Ministry of Justice Legislation Information System (mevzuat.gov.tr) for searching legislation and retrieving article content.
Perplexity Ask MCP Server
A connector for the Perplexity API to enable web search within the MCP ecosystem.
Hardcover
MCP Server to fetch Books, Book Series, and User Books from Hardcover
Brave Search
An MCP server for the Brave Search API, providing web and local search capabilities via a streaming SSE interface.
MCP Agent
A lightweight, local MCP server in Python that enables RAG search through AWS Lambda.