MCP Iceberg Catalog
An MCP server for interacting with Apache Iceberg catalogs and data lakes.
MCP Iceberg Catalog
A MCP (Model Context Protocol) server implementation for interacting with Apache Iceberg. This server provides a SQL interface for querying and managing Iceberg tables through Claude desktop.
Claude Desktop as your Iceberg Data Lake Catalog

How to Install in Claude Desktop
Installing via Smithery
To install MCP Iceberg Catalog for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @ahodroj/mcp-iceberg-service --client claude
-
Prerequisites
- Python 3.10 or higher
- UV package installer (recommended) or pip
- Access to an Iceberg REST catalog and S3-compatible storage
-
How to install in Claude Desktop Add the following configuration to
claude_desktop_config.json:
{
"mcpServers": {
"iceberg": {
"command": "uv",
"args": [
"--directory",
"PATH_TO_/mcp-iceberg-service",
"run",
"mcp-server-iceberg"
],
"env": {
"ICEBERG_CATALOG_URI" : "http://localhost:8181",
"ICEBERG_WAREHOUSE" : "YOUR ICEBERG WAREHOUSE NAME",
"S3_ENDPOINT" : "OPTIONAL IF USING S3",
"AWS_ACCESS_KEY_ID" : "YOUR S3 ACCESS KEY",
"AWS_SECRET_ACCESS_KEY" : "YOUR S3 SECRET KEY"
}
}
}
}
Design
Architecture
The MCP server is built on three main components:
-
MCP Protocol Handler
- Implements the Model Context Protocol for communication with Claude
- Handles request/response cycles through stdio
- Manages server lifecycle and initialization
-
Query Processor
- Parses SQL queries using
sqlparse - Supports operations:
- LIST TABLES
- DESCRIBE TABLE
- SELECT
- INSERT
- Parses SQL queries using
-
Iceberg Integration
- Uses
pyicebergfor table operations - Integrates with PyArrow for efficient data handling
- Manages catalog connections and table operations
- Uses
PyIceberg Integration
The server utilizes PyIceberg in several ways:
-
Catalog Management
- Connects to REST catalogs
- Manages table metadata
- Handles namespace operations
-
Data Operations
- Converts between PyIceberg and PyArrow types
- Handles data insertion through PyArrow tables
- Manages table schemas and field types
-
Query Execution
- Translates SQL to PyIceberg operations
- Handles data scanning and filtering
- Manages result set conversion
Further Implementation Needed
-
Query Operations
- Implement UPDATE operations
- Add DELETE support
- Support for CREATE TABLE with schema definition
- Add ALTER TABLE operations
- Implement table partitioning support
-
Data Types
- Support for complex types (arrays, maps, structs)
- Add timestamp with timezone handling
- Support for decimal types
- Add nested field support
-
Performance Improvements
- Implement batch inserts
- Add query optimization
- Support for parallel scans
- Add caching layer for frequently accessed data
-
Security Features
- Add authentication mechanisms
- Implement role-based access control
- Add row-level security
- Support for encrypted connections
-
Monitoring and Management
- Add metrics collection
- Implement query logging
- Add performance monitoring
- Support for table maintenance operations
-
Error Handling
- Improve error messages
- Add retry mechanisms for transient failures
- Implement transaction support
- Add data validation
Related Servers
Simple Memory MCP
A memory management system for AI assistants to store, retrieve, and manage user information using a local database.
Powerdrill
An MCP server that provides tools to interact with Powerdrill datasets, enabling smart AI data analysis and insights.
Trino MCP Server
A Go implementation of a Model Context Protocol (MCP) server for Trino, enabling LLM models to query distributed SQL databases through standardized tools.
Elasticsearch/OpenSearch
An MCP Server for interacting with Elasticsearch and OpenSearch clusters.
MongoDB
Provides read-only access to MongoDB databases through standardized MCP tools and resources.
Supabase Read-Only MCP Server
Provides read-only access to a Supabase database.
MCP Variance Log
Logs statistical variations and unusual events in conversation structures to a SQLite database.
CData SAP Ariba Procurement Server
A read-only MCP server for querying live SAP Ariba Procurement data. Requires the CData JDBC Driver for SAP Ariba Procurement.
FinDataMCP
Provides financial data. Requires external Python dependencies installed with the uv package manager.
Timeplus
Interact with the Timeplus real-time data platform for querying and managing data streams.