Memora

A lightweight MCP server for semantic memory storage, knowledge graphs, and cross-session context

Features

Core Storage

  • πŸ’Ύ Persistent Storage - SQLite with optional cloud sync (S3, R2, D1)
  • πŸ“‚ Hierarchical Organization - Section/subsection structure with auto-hierarchy assignment
  • πŸ“¦ Export/Import - Backup and restore with merge strategies

Search & Intelligence

  • πŸ” Semantic Search - Vector embeddings (TF-IDF, sentence-transformers, OpenAI)
  • 🎯 Advanced Queries - Full-text, date ranges, tag filters (AND/OR/NOT), hybrid search
  • πŸ”€ Cross-references - Auto-linked related memories based on similarity
  • πŸ€– LLM Deduplication - Find and merge duplicates with AI-powered comparison
  • πŸ”— Memory Linking - Typed edges, importance boosting, and cluster detection

Tools & Visualization

  • ⚑ Memory Automation - Structured tools for TODOs, issues, and sections
  • πŸ•ΈοΈ Knowledge Graph - Interactive visualization with Mermaid rendering and cluster overlays
  • 🌐 Live Graph Server - Built-in HTTP server with cloud-hosted option (D1/Pages)
  • πŸ“‘ Event Notifications - Poll-based system for inter-agent communication
  • πŸ“Š Statistics & Analytics - Tag usage, trends, and connection insights
  • 🧠 Memory Insights - Activity summary, stale detection, consolidation suggestions, and LLM-powered pattern analysis
  • πŸ“œ Action History - Track all memory operations (create, update, delete, merge, boost, link) with grouped timeline view

Install

pip install git+https://github.com/agentic-mcp-tools/memora.git

Includes cloud storage (S3/R2) and OpenAI embeddings out of the box.

# Optional: local embeddings (offline, ~2GB for PyTorch)
pip install "memora[local]" @ git+https://github.com/agentic-mcp-tools/memora.git

The server runs automatically when configured in Claude Code. Manual invocation:

# Default (stdio mode for MCP)
memora-server

# With graph visualization server
memora-server --graph-port 8765

# HTTP transport (alternative to stdio)
memora-server --transport streamable-http --host 127.0.0.1 --port 8080

Claude Code

Add to .mcp.json in your project root:

Local DB:

{
  "mcpServers": {
    "memora": {
      "command": "memora-server",
      "args": [],
      "env": {
        "MEMORA_DB_PATH": "~/.local/share/memora/memories.db",
        "MEMORA_ALLOW_ANY_TAG": "1",
        "MEMORA_GRAPH_PORT": "8765"
      }
    }
  }
}

Cloud DB (Cloudflare D1) - Recommended:

{
  "mcpServers": {
    "memora": {
      "command": "memora-server",
      "args": ["--no-graph"],
      "env": {
        "MEMORA_STORAGE_URI": "d1://<account-id>/<database-id>",
        "CLOUDFLARE_API_TOKEN": "<your-api-token>",
        "MEMORA_ALLOW_ANY_TAG": "1"
      }
    }
  }
}

With D1, use --no-graph to disable the local visualization server. Instead, use the hosted graph at your Cloudflare Pages URL (see Cloud Graph).

Cloud DB (S3/R2) - Sync mode:

{
  "mcpServers": {
    "memora": {
      "command": "memora-server",
      "args": [],
      "env": {
        "AWS_PROFILE": "memora",
        "AWS_ENDPOINT_URL": "https://<account-id>.r2.cloudflarestorage.com",
        "MEMORA_STORAGE_URI": "s3://memories/memories.db",
        "MEMORA_CLOUD_ENCRYPT": "true",
        "MEMORA_ALLOW_ANY_TAG": "1",
        "MEMORA_GRAPH_PORT": "8765"
      }
    }
  }
}

Codex CLI

Add to ~/.codex/config.toml:

[mcp_servers.memora]
  command = "memora-server"  # or full path: /path/to/bin/memora-server
  args = ["--no-graph"]
  env = {
    AWS_PROFILE = "memora",
    AWS_ENDPOINT_URL = "https://<account-id>.r2.cloudflarestorage.com",
    MEMORA_STORAGE_URI = "s3://memories/memories.db",
    MEMORA_CLOUD_ENCRYPT = "true",
    MEMORA_ALLOW_ANY_TAG = "1",
  }
VariableDescription
MEMORA_DB_PATHLocal SQLite database path (default: ~/.local/share/memora/memories.db)
MEMORA_STORAGE_URIStorage URI: d1://<account>/<db-id> (D1) or s3://bucket/memories.db (S3/R2)
CLOUDFLARE_API_TOKENAPI token for D1 database access (required for d1:// URI)
MEMORA_CLOUD_ENCRYPTEncrypt database before uploading to cloud (true/false)
MEMORA_CLOUD_COMPRESSCompress database before uploading to cloud (true/false)
MEMORA_CACHE_DIRLocal cache directory for cloud-synced database
MEMORA_ALLOW_ANY_TAGAllow any tag without validation against allowlist (1 to enable)
MEMORA_TAG_FILEPath to file containing allowed tags (one per line)
MEMORA_TAGSComma-separated list of allowed tags
MEMORA_GRAPH_PORTPort for the knowledge graph visualization server (default: 8765)
MEMORA_EMBEDDING_MODELEmbedding backend: tfidf (default), sentence-transformers, or openai
SENTENCE_TRANSFORMERS_MODELModel for sentence-transformers (default: all-MiniLM-L6-v2)
OPENAI_API_KEYAPI key for OpenAI embeddings and LLM deduplication
OPENAI_BASE_URLBase URL for OpenAI-compatible APIs (OpenRouter, Azure, etc.)
OPENAI_EMBEDDING_MODELOpenAI embedding model (default: text-embedding-3-small)
MEMORA_LLM_ENABLEDEnable LLM-powered deduplication comparison (true/false, default: true)
MEMORA_LLM_MODELModel for deduplication comparison (default: gpt-4o-mini)
AWS_PROFILEAWS credentials profile from ~/.aws/credentials (useful for R2)
AWS_ENDPOINT_URLS3-compatible endpoint for R2/MinIO
R2_PUBLIC_DOMAINPublic domain for R2 image URLs

Memora supports three embedding backends:

BackendInstallQualitySpeed
openai (default)IncludedHigh qualityAPI latency
sentence-transformerspip install memora[local]Good, runs offlineMedium
tfidfIncludedBasic keyword matchingFast

Automatic: Embeddings and cross-references are computed automatically when you memory_create, memory_update, or memory_create_batch.

Manual rebuild required when:

  • Changing MEMORA_EMBEDDING_MODEL after memories exist
  • Switching to a different sentence-transformers model
# After changing embedding model, rebuild all embeddings
memory_rebuild_embeddings

# Then rebuild cross-references to update the knowledge graph
memory_rebuild_crossrefs

A built-in HTTP server starts automatically with the MCP server, serving an interactive knowledge graph visualization.

Access locally:

http://localhost:8765/graph

Remote access via SSH:

ssh -L 8765:localhost:8765 user@remote
# Then open http://localhost:8765/graph in your browser

Configuration:

{
  "env": {
    "MEMORA_GRAPH_PORT": "8765"
  }
}

To disable: add "--no-graph" to args in your MCP config.

Graph UI Features

  • Details Panel - View memory content, metadata, tags, and related memories
  • Timeline Panel - Browse memories chronologically, click to highlight in graph
  • History Panel - Action log of all operations with grouped consecutive entries and clickable memory references (deleted memories shown as strikethrough)
  • Time Slider - Filter memories by date range, drag to explore history
  • Real-time Updates - Graph, timeline, and history update via SSE when memories change
  • Filters - Tag/section dropdowns, zoom controls
  • Mermaid Rendering - Code blocks render as diagrams

Node Colors

  • 🟣 Tags - Purple shades by tag
  • πŸ”΄ Issues - Red (open), Orange (in progress), Green (resolved), Gray (won't fix)
  • πŸ”΅ TODOs - Blue (open), Orange (in progress), Green (completed), Red (blocked)

Node size reflects connection count.

When using Cloudflare D1 as your database, the graph visualization is hosted on Cloudflare Pages - no local server needed.

Benefits:

  • Access from anywhere (no SSH tunneling)
  • Real-time updates via WebSocket
  • Multi-database support via ?db= parameter
  • Secure access with Cloudflare Zero Trust

Setup:

  1. Create D1 database:

    npx wrangler d1 create memora-graph
    npx wrangler d1 execute memora-graph --file=memora-graph/schema.sql
    
  2. Deploy Pages:

    cd memora-graph
    npx wrangler pages deploy ./public --project-name=memora-graph
    
  3. Configure bindings in Cloudflare Dashboard:

    • Pages β†’ memora-graph β†’ Settings β†’ Bindings
    • Add D1: DB_MEMORA β†’ your database
    • Add R2: R2_MEMORA β†’ your bucket (for images)
  4. Configure MCP with D1 URI:

    {
      "env": {
        "MEMORA_STORAGE_URI": "d1://<account-id>/<database-id>",
        "CLOUDFLARE_API_TOKEN": "<your-token>"
      }
    }
    

Access: https://memora-graph.pages.dev

Secure with Zero Trust:

  1. Cloudflare Dashboard β†’ Zero Trust β†’ Access β†’ Applications
  2. Add application for memora-graph.pages.dev
  3. Create policy with allowed emails
  4. Pages β†’ Settings β†’ Enable Access Policy

See memora-graph/ for detailed setup and multi-database configuration.

Find and merge duplicate memories using AI-powered semantic comparison:

# Find potential duplicates (uses cross-refs + optional LLM analysis)
memory_find_duplicates(min_similarity=0.7, max_similarity=0.95, limit=10, use_llm=True)

# Merge duplicates (append, prepend, or replace strategies)
memory_merge(source_id=123, target_id=456, merge_strategy="append")

LLM Comparison analyzes memory pairs and returns:

  • verdict: "duplicate", "similar", or "different"
  • confidence: 0.0-1.0 score
  • reasoning: Brief explanation
  • suggested_action: "merge", "keep_both", or "review"

Works with any OpenAI-compatible API (OpenAI, OpenRouter, Azure, etc.) via OPENAI_BASE_URL.

Structured tools for common memory types:

# Create a TODO with status and priority
memory_create_todo(content="Implement feature X", status="open", priority="high", category="backend")

# Create an issue with severity
memory_create_issue(content="Bug in login flow", status="open", severity="major", component="auth")

# Create a section placeholder (hidden from graph)
memory_create_section(content="Architecture", section="docs", subsection="api")

Analyze stored memories and surface actionable insights:

# Full analysis with LLM-powered pattern detection
memory_insights(period="7d", include_llm_analysis=True)

# Quick summary without LLM (faster, no API key needed)
memory_insights(period="1m", include_llm_analysis=False)

Returns:

  • Activity summary β€” memories created in the period, grouped by type and tag
  • Open items β€” open TODOs and issues with stale detection (configurable via MEMORA_STALE_DAYS, default 14)
  • Consolidation candidates β€” similar memory pairs that could be merged
  • LLM analysis β€” themes, focus areas, knowledge gaps, and a summary (requires OPENAI_API_KEY)

Manage relationships between memories:

# Create typed edges between memories
memory_link(from_id=1, to_id=2, edge_type="implements", bidirectional=True)

# Edge types: references, implements, supersedes, extends, contradicts, related_to

# Remove links
memory_unlink(from_id=1, to_id=2)

# Boost memory importance for ranking
memory_boost(memory_id=42, boost_amount=0.5)

# Detect clusters of related memories
memory_clusters(min_cluster_size=2, min_score=0.3)

For offline viewing, export memories as a static HTML file:

memory_export_graph(output_path="~/memories_graph.html", min_score=0.25)

This is optional - the Live Graph Server provides the same visualization with real-time updates.

Browse memories directly in Neovim with Telescope. Copy the plugin to your config:

# For kickstart.nvim / lazy.nvim
cp nvim/memora.lua ~/.config/nvim/lua/kickstart/plugins/

Usage: Press <leader>sm to open the memory browser with fuzzy search and preview.

Requires: telescope.nvim, plenary.nvim, and memora installed in your Python environment.

Related Servers