Memora
A lightweight MCP server for semantic memory storage, knowledge graphs, and cross-session context
Features
Core Storage
- πΎ Persistent Storage - SQLite with optional cloud sync (S3, R2, D1)
- π Hierarchical Organization - Section/subsection structure with auto-hierarchy assignment
- π¦ Export/Import - Backup and restore with merge strategies
Search & Intelligence
- π Semantic Search - Vector embeddings (TF-IDF, sentence-transformers, OpenAI)
- π― Advanced Queries - Full-text, date ranges, tag filters (AND/OR/NOT), hybrid search
- π Cross-references - Auto-linked related memories based on similarity
- π€ LLM Deduplication - Find and merge duplicates with AI-powered comparison
- π Memory Linking - Typed edges, importance boosting, and cluster detection
Tools & Visualization
- β‘ Memory Automation - Structured tools for TODOs, issues, and sections
- πΈοΈ Knowledge Graph - Interactive visualization with Mermaid rendering and cluster overlays
- π Live Graph Server - Built-in HTTP server with cloud-hosted option (D1/Pages)
- π‘ Event Notifications - Poll-based system for inter-agent communication
- π Statistics & Analytics - Tag usage, trends, and connection insights
- π§ Memory Insights - Activity summary, stale detection, consolidation suggestions, and LLM-powered pattern analysis
- π Action History - Track all memory operations (create, update, delete, merge, boost, link) with grouped timeline view
Install
pip install git+https://github.com/agentic-mcp-tools/memora.git
Includes cloud storage (S3/R2) and OpenAI embeddings out of the box.
# Optional: local embeddings (offline, ~2GB for PyTorch)
pip install "memora[local]" @ git+https://github.com/agentic-mcp-tools/memora.git
The server runs automatically when configured in Claude Code. Manual invocation:
# Default (stdio mode for MCP)
memora-server
# With graph visualization server
memora-server --graph-port 8765
# HTTP transport (alternative to stdio)
memora-server --transport streamable-http --host 127.0.0.1 --port 8080
Claude Code
Add to .mcp.json in your project root:
Local DB:
{
"mcpServers": {
"memora": {
"command": "memora-server",
"args": [],
"env": {
"MEMORA_DB_PATH": "~/.local/share/memora/memories.db",
"MEMORA_ALLOW_ANY_TAG": "1",
"MEMORA_GRAPH_PORT": "8765"
}
}
}
}
Cloud DB (Cloudflare D1) - Recommended:
{
"mcpServers": {
"memora": {
"command": "memora-server",
"args": ["--no-graph"],
"env": {
"MEMORA_STORAGE_URI": "d1://<account-id>/<database-id>",
"CLOUDFLARE_API_TOKEN": "<your-api-token>",
"MEMORA_ALLOW_ANY_TAG": "1"
}
}
}
}
With D1, use --no-graph to disable the local visualization server. Instead, use the hosted graph at your Cloudflare Pages URL (see Cloud Graph).
Cloud DB (S3/R2) - Sync mode:
{
"mcpServers": {
"memora": {
"command": "memora-server",
"args": [],
"env": {
"AWS_PROFILE": "memora",
"AWS_ENDPOINT_URL": "https://<account-id>.r2.cloudflarestorage.com",
"MEMORA_STORAGE_URI": "s3://memories/memories.db",
"MEMORA_CLOUD_ENCRYPT": "true",
"MEMORA_ALLOW_ANY_TAG": "1",
"MEMORA_GRAPH_PORT": "8765"
}
}
}
}
Codex CLI
Add to ~/.codex/config.toml:
[mcp_servers.memora]
command = "memora-server" # or full path: /path/to/bin/memora-server
args = ["--no-graph"]
env = {
AWS_PROFILE = "memora",
AWS_ENDPOINT_URL = "https://<account-id>.r2.cloudflarestorage.com",
MEMORA_STORAGE_URI = "s3://memories/memories.db",
MEMORA_CLOUD_ENCRYPT = "true",
MEMORA_ALLOW_ANY_TAG = "1",
}
| Variable | Description |
|---|---|
MEMORA_DB_PATH | Local SQLite database path (default: ~/.local/share/memora/memories.db) |
MEMORA_STORAGE_URI | Storage URI: d1://<account>/<db-id> (D1) or s3://bucket/memories.db (S3/R2) |
CLOUDFLARE_API_TOKEN | API token for D1 database access (required for d1:// URI) |
MEMORA_CLOUD_ENCRYPT | Encrypt database before uploading to cloud (true/false) |
MEMORA_CLOUD_COMPRESS | Compress database before uploading to cloud (true/false) |
MEMORA_CACHE_DIR | Local cache directory for cloud-synced database |
MEMORA_ALLOW_ANY_TAG | Allow any tag without validation against allowlist (1 to enable) |
MEMORA_TAG_FILE | Path to file containing allowed tags (one per line) |
MEMORA_TAGS | Comma-separated list of allowed tags |
MEMORA_GRAPH_PORT | Port for the knowledge graph visualization server (default: 8765) |
MEMORA_EMBEDDING_MODEL | Embedding backend: tfidf (default), sentence-transformers, or openai |
SENTENCE_TRANSFORMERS_MODEL | Model for sentence-transformers (default: all-MiniLM-L6-v2) |
OPENAI_API_KEY | API key for OpenAI embeddings and LLM deduplication |
OPENAI_BASE_URL | Base URL for OpenAI-compatible APIs (OpenRouter, Azure, etc.) |
OPENAI_EMBEDDING_MODEL | OpenAI embedding model (default: text-embedding-3-small) |
MEMORA_LLM_ENABLED | Enable LLM-powered deduplication comparison (true/false, default: true) |
MEMORA_LLM_MODEL | Model for deduplication comparison (default: gpt-4o-mini) |
AWS_PROFILE | AWS credentials profile from ~/.aws/credentials (useful for R2) |
AWS_ENDPOINT_URL | S3-compatible endpoint for R2/MinIO |
R2_PUBLIC_DOMAIN | Public domain for R2 image URLs |
Memora supports three embedding backends:
| Backend | Install | Quality | Speed |
|---|---|---|---|
openai (default) | Included | High quality | API latency |
sentence-transformers | pip install memora[local] | Good, runs offline | Medium |
tfidf | Included | Basic keyword matching | Fast |
Automatic: Embeddings and cross-references are computed automatically when you memory_create, memory_update, or memory_create_batch.
Manual rebuild required when:
- Changing
MEMORA_EMBEDDING_MODELafter memories exist - Switching to a different sentence-transformers model
# After changing embedding model, rebuild all embeddings
memory_rebuild_embeddings
# Then rebuild cross-references to update the knowledge graph
memory_rebuild_crossrefs
A built-in HTTP server starts automatically with the MCP server, serving an interactive knowledge graph visualization.
Access locally:
http://localhost:8765/graph
Remote access via SSH:
ssh -L 8765:localhost:8765 user@remote
# Then open http://localhost:8765/graph in your browser
Configuration:
{
"env": {
"MEMORA_GRAPH_PORT": "8765"
}
}
To disable: add "--no-graph" to args in your MCP config.
Graph UI Features
- Details Panel - View memory content, metadata, tags, and related memories
- Timeline Panel - Browse memories chronologically, click to highlight in graph
- History Panel - Action log of all operations with grouped consecutive entries and clickable memory references (deleted memories shown as strikethrough)
- Time Slider - Filter memories by date range, drag to explore history
- Real-time Updates - Graph, timeline, and history update via SSE when memories change
- Filters - Tag/section dropdowns, zoom controls
- Mermaid Rendering - Code blocks render as diagrams
Node Colors
- π£ Tags - Purple shades by tag
- π΄ Issues - Red (open), Orange (in progress), Green (resolved), Gray (won't fix)
- π΅ TODOs - Blue (open), Orange (in progress), Green (completed), Red (blocked)
Node size reflects connection count.
When using Cloudflare D1 as your database, the graph visualization is hosted on Cloudflare Pages - no local server needed.
Benefits:
- Access from anywhere (no SSH tunneling)
- Real-time updates via WebSocket
- Multi-database support via
?db=parameter - Secure access with Cloudflare Zero Trust
Setup:
-
Create D1 database:
npx wrangler d1 create memora-graph npx wrangler d1 execute memora-graph --file=memora-graph/schema.sql -
Deploy Pages:
cd memora-graph npx wrangler pages deploy ./public --project-name=memora-graph -
Configure bindings in Cloudflare Dashboard:
- Pages β memora-graph β Settings β Bindings
- Add D1:
DB_MEMORAβ your database - Add R2:
R2_MEMORAβ your bucket (for images)
-
Configure MCP with D1 URI:
{ "env": { "MEMORA_STORAGE_URI": "d1://<account-id>/<database-id>", "CLOUDFLARE_API_TOKEN": "<your-token>" } }
Access: https://memora-graph.pages.dev
Secure with Zero Trust:
- Cloudflare Dashboard β Zero Trust β Access β Applications
- Add application for
memora-graph.pages.dev - Create policy with allowed emails
- Pages β Settings β Enable Access Policy
See memora-graph/ for detailed setup and multi-database configuration.
Find and merge duplicate memories using AI-powered semantic comparison:
# Find potential duplicates (uses cross-refs + optional LLM analysis)
memory_find_duplicates(min_similarity=0.7, max_similarity=0.95, limit=10, use_llm=True)
# Merge duplicates (append, prepend, or replace strategies)
memory_merge(source_id=123, target_id=456, merge_strategy="append")
LLM Comparison analyzes memory pairs and returns:
verdict: "duplicate", "similar", or "different"confidence: 0.0-1.0 scorereasoning: Brief explanationsuggested_action: "merge", "keep_both", or "review"
Works with any OpenAI-compatible API (OpenAI, OpenRouter, Azure, etc.) via OPENAI_BASE_URL.
Structured tools for common memory types:
# Create a TODO with status and priority
memory_create_todo(content="Implement feature X", status="open", priority="high", category="backend")
# Create an issue with severity
memory_create_issue(content="Bug in login flow", status="open", severity="major", component="auth")
# Create a section placeholder (hidden from graph)
memory_create_section(content="Architecture", section="docs", subsection="api")
Analyze stored memories and surface actionable insights:
# Full analysis with LLM-powered pattern detection
memory_insights(period="7d", include_llm_analysis=True)
# Quick summary without LLM (faster, no API key needed)
memory_insights(period="1m", include_llm_analysis=False)
Returns:
- Activity summary β memories created in the period, grouped by type and tag
- Open items β open TODOs and issues with stale detection (configurable via
MEMORA_STALE_DAYS, default 14) - Consolidation candidates β similar memory pairs that could be merged
- LLM analysis β themes, focus areas, knowledge gaps, and a summary (requires
OPENAI_API_KEY)
Manage relationships between memories:
# Create typed edges between memories
memory_link(from_id=1, to_id=2, edge_type="implements", bidirectional=True)
# Edge types: references, implements, supersedes, extends, contradicts, related_to
# Remove links
memory_unlink(from_id=1, to_id=2)
# Boost memory importance for ranking
memory_boost(memory_id=42, boost_amount=0.5)
# Detect clusters of related memories
memory_clusters(min_cluster_size=2, min_score=0.3)
For offline viewing, export memories as a static HTML file:
memory_export_graph(output_path="~/memories_graph.html", min_score=0.25)
This is optional - the Live Graph Server provides the same visualization with real-time updates.
Browse memories directly in Neovim with Telescope. Copy the plugin to your config:
# For kickstart.nvim / lazy.nvim
cp nvim/memora.lua ~/.config/nvim/lua/kickstart/plugins/
Usage: Press <leader>sm to open the memory browser with fuzzy search and preview.
Requires: telescope.nvim, plenary.nvim, and memora installed in your Python environment.
Related Servers
mcp-datadog-server
Datadog MCP Server
Text-to-Speech (TTS)
A Text-to-Speech server supporting multiple backends like macOS say, ElevenLabs, Google Gemini, and OpenAI TTS.
Context Lens
Semantic search knowledge base for MCP-enabled AI assistants
O'RLY Book Cover Generator
Generates O'RLY? (O'Reilly parody) book covers.
teckel navigation toolbox
Give LLM/AI/Agents the ability to provide accurate navigation information (time & place, road-trips, general aviation).
Wazuh MCP Server
AI-powered security operations with Wazuh SIEM + Claude Desktop. Natural language threat detection, automated incident response & compliance.
Stockfish
Enables AI to communicate with the Stockfish chess engine.
Overleaf MCP server
allow Tools like copilot, claude desktop, claude code etc. perform CRUD operations on overleaf projects via git int
QGold
A server for natural language processing of asset prices and financial modeling for withdrawal rate impact analysis.
TabNews Integration
Access data from the TabNews API.