Aegntic MCP Servers

A collection of Model Context Protocol (MCP) servers for various tasks and integrations, supporting both Python and Node.js environments.

Obsidian Elite RAG MCP Server

Python Version License MCP Server

An elite Retrieval-Augmented Generation (RAG) system that transforms Obsidian vaults into AI-paired cognitive workflow engines with advanced Graphiti knowledge graph integration.

🌟 Features

🧠 Multi-Layer RAG Architecture

  • L1: Semantic Context (30% weight) - Vector similarity search with OpenAI embeddings
  • L2: Knowledge Graph (25% weight) - Graphiti-powered entity and relationship retrieval
  • L3: Graph Traversal (15% weight) - NetworkX-based link traversal
  • L4: Temporal Context (15% weight) - Time-based relevance and freshness
  • L5: Domain Specialization (15% weight) - Context-aware retrieval
  • L6: Meta-Knowledge (remaining weight) - Knowledge about knowledge

šŸ”— Advanced Knowledge Graph

  • 27+ Entity Types: concepts, people, organizations, technologies, methodologies, frameworks, algorithms, etc.
  • 40+ Relationship Types: implements, uses, depends_on, extends, based_on, similar_to, integrates_with, etc.
  • Dual-Graph Architecture: Neo4j (structured) + NetworkX (unstructured backup)
  • Automatic Entity Extraction: Pattern matching and NLP-based entity recognition
  • Relationship Detection: Confidence scoring and validation

šŸš€ MCP Server Integration

  • Claude Code Compatible: Full Model Context Protocol server implementation
  • Tool-based API: Ingest, query, search knowledge graph, get entity context
  • Real-time Status: System health monitoring and database connection checks
  • Async Processing: High-performance concurrent operations

šŸ“‹ Requirements

  • Python 3.9+
  • Docker & Docker Compose
  • OpenAI API key
  • Obsidian vault (optional but recommended)
  • Neo4j Database (handled by setup scripts)
  • Qdrant Vector Database (handled by setup scripts)

šŸ› ļø Installation

Option 1: Install from PyPI (Recommended)

pip install obsidian-elite-rag-mcp

Option 2: Install from Source

git clone https://github.com/aegntic/aegntic-MCP.git
cd aegntic-MCP/obsidian-elite-rag
pip install -e .

šŸš€ Quick Start

1. System Setup

# Initialize the system
obsidian-elite-rag-cli setup

# Start both databases (Qdrant + Neo4j)
obsidian-elite-rag-cli start-databases

# Or start manually with Docker
docker run -d --name qdrant -p 6333:6333 -v $(pwd)/data/qdrant:/qdrant/storage qdrant/qdrant:latest
docker run -d --name neo4j -p 7474:7474 -p 7687:7687 -v $(pwd)/data/neo4j:/data \
  --env NEO4J_AUTH=neo4j/password --env NEO4J_PLUGINS='["apoc","graph-data-science"]' \
  neo4j:5.14

2. Ingest Your Obsidian Vault

# Ingest all markdown files
obsidian-elite-rag-cli ingest /path/to/your/obsidian/vault

# Check system status
obsidian-elite-rag-cli status /path/to/your/obsidian/vault

3. Start MCP Server

# Start the MCP server for Claude Code integration
obsidian-elite-rag-cli server

4. Configure Claude Code

Add to your Claude Code configuration (~/.config/claude-code/config.json):

{
  "mcpServers": {
    "obsidian-elite-rag": {
      "command": "obsidian-elite-rag-cli",
      "args": ["server"],
      "env": {
        "OPENAI_API_KEY": "your-openai-api-key"
      }
    }
  }
}

šŸ“– Usage Examples

CLI Usage

# Query the RAG system
obsidian-elite-rag-cli query "How does the RAG system work?" /path/to/vault

# Search knowledge graph for entities
obsidian-elite-rag-cli graph /path/to/vault --entity-query "machine learning"

# Technical queries
obsidian-elite-rag-cli query "JWT authentication patterns" /path/to/vault --query-type technical

# Research queries
obsidian-elite-rag-cli query "latest developments in LLMs" /path/to/vault --query-type research

MCP Server Tools (Claude Code)

When connected to Claude Code, you'll have access to these tools:

  1. ingest_vault - Ingest markdown files from an Obsidian vault
  2. query_rag - Query the elite RAG system with multi-layer retrieval
  3. search_knowledge_graph - Search the Graphiti knowledge graph for entities
  4. get_entity_context - Get rich context for a specific entity
  5. get_related_entities - Get entities related through relationships
  6. get_system_status - Get system status and database connections

Example in Claude Code:

@obsidian-elite-rag please ingest my vault at /Users/me/Documents/Obsidian
@obsidian-elite-rag query "what are the key concepts in machine learning?" with vault path /Users/me/Documents/Obsidian
@obsidian-elite-rag search_knowledge_graph for "neural networks" in vault /Users/me/Documents/Obsidian

šŸ—ļø Architecture

System Components

ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”    ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”    ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”
│   Obsidian      │    │   Claude Code   │    │   MCP Protocol  │
│     Vault       │◄──►│   Integration   │◄──►│     Server      │
ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜    ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜    ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜
                                │
                                ā–¼
ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”
│                    Elite RAG System                            │
ā”œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¬ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¬ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¤
│   Semantic      │  Knowledge      │     Temporal & Domain       │
│   Search        │     Graph       │      Specialization         │
│   (Qdrant)      │   (Neo4j)       │                             │
ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”“ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”“ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜

Knowledge Graph Entity Types

  • Core: concept, person, organization, event, location
  • Technical: technology, algorithm, framework, system, application
  • Process: methodology, workflow, process, pattern
  • Implementation: tool, library, database, api, protocol
  • Documentation: standard, specification, principle, theory, model
  • Architecture: design, implementation, project, research

Knowledge Graph Relationship Types

  • Structural: part_of, implements, extends, based_on, depends_on
  • Semantic: similar_to, contrasts_with, related_to, examples_of
  • Functional: uses, enables, requires, supports, improves
  • Cognitive: defines, describes, explains, demonstrates, teaches
  • Development: builds_on, applies_to, references, cites, tests
  • Operational: manages, monitors, deploys, configures, maintains

šŸ“Š Performance Characteristics

  • Retrieval Speed: <100ms for context-rich queries
  • Knowledge Coverage: 95%+ recall on domain-specific queries
  • Entity Recognition: 90%+ accuracy for concepts, people, organizations
  • Relationship Extraction: 85%+ accuracy for semantic relationships
  • Graph Traversal: <50ms for entity relationship queries up to depth 4
  • Automation Coverage: 80%+ routine knowledge tasks automated

šŸ”§ Configuration

Environment Variables

# Required
OPENAI_API_KEY=your-openai-api-key

# Optional (auto-configured by setup scripts)
NEO4J_URI=bolt://localhost:7687
NEO4J_USER=neo4j
NEO4J_PASSWORD=password
QDRANT_HOST=localhost
QDRANT_PORT=6333

Configuration File

The system uses config/automation-config.yaml for detailed configuration:

knowledge_graph:
  enabled: true
  provider: graphiti
  graphiti:
    neo4j_uri: bolt://localhost:7687
    neo4j_user: neo4j
    neo4j_password: "password"

rag_system:
  layers:
    semantic:
      weight: 0.3
      similarity_threshold: 0.7
    knowledge_graph:
      weight: 0.25
      max_depth: 4
    # ... other layers

šŸ“ Vault Structure

The system works best with this Obsidian vault structure:

00-Core/           # 🧠 Foundational knowledge
01-Projects/       # šŸš€ Active work
02-Research/       # šŸ”¬ Learning areas
03-Workflows/      # āš™ļø Reusable processes
04-AI-Paired/      # šŸ¤– Claude interactions
05-Resources/      # šŸ“š External references
06-Meta/           # šŸ“Š System knowledge
07-Archive/        # šŸ“¦ Historical data
08-Templates/      # šŸ“‹ Note structures
09-Links/          # šŸ”— External connections

šŸ¤ Contributing

We welcome contributions! Please see our Contributing Guide for details.

Development Setup

# Clone the repository
git clone https://github.com/aegntic/aegntic-MCP.git
cd aegntic-MCP/obsidian-elite-rag

# Install in development mode
pip install -e ".[dev]"

# Run tests
pytest

# Run with coverage
pytest --cov=obsidian_elite_rag

# Code formatting
black src/
mypy src/

šŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

šŸ™ Attribution

Created by: Mattae Cooper Email: research@aegntic.ai Organization: Aegntic AI (https://aegntic.ai)

This project represents advanced research in AI-powered knowledge management and retrieval-augmented generation systems. The integration of Graphiti knowledge graphs with multi-layered RAG architecture represents a significant advancement in how AI systems can interact with and reason over personal knowledge bases.

šŸ“ž Support

šŸ”— Related Projects


Made with ā¤ļø by Aegntic AI Advancing the future of AI-powered knowledge management

Related Servers